Person:
Cheng, Jingwei

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Cheng

First Name

Jingwei

Name

Cheng, Jingwei

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T cell exhaustion in reducing T cell responses
    (2013) Dowlatshahi, Mitra; Huang, Victor; Gehad, Ahmed; Jiang, Ying; Calarese, Adam; Teague, Jessica E.; Dorosario, Andrew; Cheng, Jingwei; Nghiem, Paul; Schanbacher, Carl; Thakuria, Manisha; Schmults, Chrysalyne; Wang, Linda C.; Clark, Rachael
    Merkel cell carcinomas (MCC) are rare but highly malignant skin cancers associated with a novel polyomavirus. MCC tumors were infiltrated by T cells, including effector, central memory and regulatory T cells. Infiltrating T cells showed markedly reduced activation as evidenced by reduced expression of CD69 and CD25. Treatment of MCC tumors in vitro with IL-2 and IL-15 led to T cell activation, proliferation, enhanced cytokine production and loss of viable tumor cells from cultures. Expanded tumor-infiltrating lymphocytes showed TCR repertoire skewing and upregulation of CD137. MCC tumors implanted into immunodeficient mice failed to grow unless human T cells in the tumor grafts were depleted with denileukin diftitox, suggesting tumor-specific T cells capable of controlling tumor growth were present in MCC. Both CD4+ and CD8+ FOXP3+ regulatory T cells were frequent in MCC. 50% of non-activated T cells in MCC expressed PD-1, a marker of T-cell exhaustion, and PD-L1 and PD-L2 were expressed by a subset of tumor dendritic cells and macrophages. In summary, we observed tumor-specific T cells with suppressed activity in MCC tumors. Agents that stimulate T cell activity, block Treg function or inhibit PD-1 signaling may be effective in the treatment of this highly malignant skin cancer.
  • Thumbnail Image
    Publication
    Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation
    (Public Library of Science, 2016) Berrios, Christian; Padi, Megha; Keibler, Mark A.; Park, Donglim; Molla, Vadim; Cheng, Jingwei; Lee, Soo Mi; Stephanopoulos, Gregory; Quackenbush, John; DeCaprio, James
    Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis.
  • Thumbnail Image
    Publication
    Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma
    (American Society for Microbiology, 2017) Starrett, Gabriel J.; Marcelus, Christina; Cantalupo, Paul G.; Katz, Joshua P.; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C.; Symer, David E.; Pipas, James M.; Harris, Reuben S.; DeCaprio, James
    ABSTRACT Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations.
  • Thumbnail Image
    Publication
    Interpreting Cancer Genomes Using Systematic Host Perturbations by Tumour Virus Proteins
    (Nature Publishing Group, 2012) Rozenblatt-Rosen, Orit; Deo, Rahul C.; Dricot, Amélie; Askenazi, Manor; Tavares, Maria; Abderazzaq, Fieda; Byrdsong, Danielle; Correll, Mick; Fan, Changyu; Feltkamp, Mariet C.; Franchi, Rachel; Garg, Brijesh K.; Gulbahce, Natali; Hao, Tong; Korkhin, Anna; Litovchick, Larisa; Mar, Jessica C.; Pak, Theodore R.; Rabello, Sabrina; Rubio, Renee; Shen, Yun; Tasan, Murat; Wanamaker, Shelly; Roecklein-Canfield, Jennifer; Johannsen, Eric; Barabási, Albert-László; Padi, Megha; Adelmant, Guillaume; Calderwood, Michael; Rolland, Thomas; Grace, Miranda; Pevzner, Samuel; Carvunis, Anne-Ruxandra; Chen, Alyce; Cheng, Jingwei; Duarte, Melissa; Ficarro, Scott; Holthaus, Amy Marie; James, Robert; Singh, Saurav; Spangle, Jennifer; Webber, James T.; Beroukhim, Rameen; Kieff, Elliott; Cusick, Michael; Hill, David; Munger, Karl; Marto, Jarrod; Quackenbush, John; Roth, Fritz; DeCaprio, James; Vidal, Marc
    Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations associated with cancer predisposition and large numbers of somatic genomic alterations. However, it remains challenging to distinguish between background, or “passenger” and causal, or “driver” cancer mutations in these datasets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. To test the hypothesis that genomic variations and tumour viruses may cause cancer via related mechanisms, we systematically examined host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways that go awry in cancer, such as Notch signalling and apoptosis. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches result in increased specificity for cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate prioritization of cancer-causing driver genes so as to advance understanding of the genetic basis of human cancer.
  • Thumbnail Image
    Publication
    Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor
    (Public Library of Science, 2012) Fine, Debrah A.; Rozenblatt-Rosen, Orit; Padi, Megha; Korkhin, Anna; James, Robert L.; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian Jose; Zhang, Ying; Calderwood, Michael; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod; Hill, David; Cusick, Michael; Vidal, Marc; Florens, Laurence; Washburn, Michael P.; Litovchick, Larisa; DeCaprio, James
    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT.
  • Thumbnail Image
    Publication
    Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis
    (Public Library of Science, 2017) Cheng, Jingwei; Park, Donglim; Berrios, Christian; White, Elizabeth A.; Arora, Reety; Yoon, Rosa; Branigan, Timothy; Xiao, Tengfei; Westerling, Thomas; Federation, Alexander; Zeid, Rhamy; Strober, Benjamin; Swanson, Selene K.; Florens, Laurence; Bradner, James E; Brown, Myles; Howley, Peter; Padi, Megha; Washburn, Michael P.; DeCaprio, James
    Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.