Person:
Kim, Jayoung

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kim

First Name

Jayoung

Name

Kim, Jayoung

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    Publication
    Urinary Metabolite Profiling Combined with Computational Analysis Predicts Interstitial Cystitis-Associated Candidate Biomarkers
    (American Chemical Society, 2014) Wen, He; Lee, Tack; You, Sungyong; Park, Soo-Hwan; Song, Hosook; Eilber, Karyn S.; Anger, Jennifer T.; Freeman, Michael R.; Park, Sunghyouk; Kim, Jayoung
    Interstitial cystitis/painful bladder syndrome (IC) is a chronic syndrome of unknown etiology that presents with bladder pain, urinary frequency, and urgency. The lack of specific biomarkers and a poor understanding of underlying molecular mechanisms present challenges for disease diagnosis and therapy. The goals of this study were to identify noninvasive biomarker candidates for IC from urine specimens and to potentially gain new insight into disease mechanisms using a nuclear magnetic resonance (NMR)-based global metabolomics analysis of urine from female IC patients and controls. Principal component analysis (PCA) suggested that the urinary metabolome of IC and controls was clearly different, with 140 NMR peaks significantly altered in IC patients (FDR < 0.05) compared to that in controls. On the basis of strong correlation scores, fifteen metabolite peaks were nominated as the strongest signature of IC. Among those signals that were higher in the IC group, three peaks were annotated as tyramine, the pain-related neuromodulator. Two peaks were annotated as 2-oxoglutarate. Levels of tyramine and 2-oxoglutarate were significantly elevated in urine specimens of IC subjects. An independent analysis using mass spectrometry also showed significantly increased levels of tyramine and 2-oxoglutarate in IC patients compared to controls. Functional studies showed that 2-oxoglutarate, but not tyramine, retarded growth of normal bladder epithelial cells. These preliminary findings suggest that analysis of urine metabolites has promise in biomarker development in the context of IC.
  • Thumbnail Image
    Publication
    Decreased DBC1 Expression Is Associated With Poor Prognosis in Patients With Non-Muscle-Invasive Bladder Cancer
    (The Korean Urological Association, 2013) Shim, Ui Jae; Lee, Il-Seok; Kang, Ho Won; Kim, Jayoung; Kim, Won Tae; Kim, Isaac Yi; Ryu, Keun Ho; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Yong-June; Yun, Seok-Joong; Lee, Sang-Cheol; Kim, Wun-Jae
    Purpose The deleted in bladder cancer 1 (DBC1) gene is located within chromosome 9 (9q32-33), a chromosomal region that frequently shows loss of heterozygosity in bladder cancer (BC). It is suspected that it acts as a tumor suppressor gene, but its prognostic value remains unclear. The aim of the present study was to investigate the value of DBC1 as a prognostic marker in BC. Materials and Methods The expression of DBC1 was determined by real-time polymerase chain reaction analysis in 344 patients with BC (220 non-muscle-invasive BC [NMIBC] and 124 muscle-invasive BC [MIBC]) and in 34 patients with normal bladder mucosa. The results were compared with clinicopathologic parameters, and the prognostic value of DBC1 was evaluated by Kaplan-Meier analysis and a multivariate Cox regression model. Results: DBC1 expression was significantly decreased in patients with MIBC compared with those diagnosed with NMIBC (p=0.010). Patients with aggressive tumor characteristics had lower DBC1 expression levels in NMIBC (each, p<0.05). By multivariate Cox regression analysis, low DBC1 expression was a predictor of progression to MIBC (hazard ratio, 7.104; p=0.013). Kaplan-Meier estimates revealed a significant difference in tumor recurrence, progression to MIBC, and cancer-specific survival depending on the level of DBC1 expression in NMIBC (log-rank test, each, p<0.05). Conclusions: The expression of DBC1 was associated with tumor aggressiveness, progression to MIBC, and survival in NMIBC. Our results suggest that DBC1 expression can be a useful prognostic marker for patients with NMIBC.
  • Thumbnail Image
    Publication
    Assess the expression of ubiquitin specific protease USP2a for bladder cancer diagnosis
    (BioMed Central, 2015) Jeong, Pildu; Ha, Yun-Sok; Yun, Seok-Joong; Yoon, Hyung Yoon; Freeman, Michael R.; Kim, Jayoung; Kim, Wun-Jae
    Background: Given that a deubiquitinating enzyme, ubiquitin-specific protease 2a (USP2a), regulates ubiquitination, trafficking, and degradation of EGFR, which plays a critical role in bladder cancer, in this study, we aimed to quantify the USP2a gene expression, and to determine the possibility that USP2a can be used for bladder cancer diagnosis. Methods: Using two independent cohorts (cohort 1, n = 339 in total; cohort 2, n = 140 in total) consisting of human bladder tissues from BC patients and normal controls, we analyzed the gene expression levels of USP2a. A quantitative real-time PCR amplification was performed using a Rotor Gene 6000 instrument to quantify the expression of USP2a mRNA. Results: A comparison of 305 bladder cancers and 34 age-matched controls showed an 81.4 % reduction in USP2a expression in bladder cancers as compared to normal bladder tissues (p < 0.001). In the independent cohort consisting of 140 BC tissues and matched adjacent normal bladder tissues, the levels of USP2a in the specimens of BC patients were reduced by 86.9 % as compared to matched surrounding normal specimens from the same patients (p < 0.001). Furthermore, there was 36.3 % reduction of USP2a gene expression in muscle invasive bladder cancer (MIBC, n = 121), compared to non muscle invasive bladder cancer (NMIBC, n = 184) (p = 0.004). Lastly, USP2a mRNA expression was significantly reduced in higher stages of MIBC patients (p = 0.024), but not in NMIBC patients. Conclusions: Our findings suggest that USP2a mRNA may be considered as a diagnostic marker candidate for bladder cancer, in particular, to stratify MIBC patients with a more invasive phenotype.
  • Thumbnail Image
    Publication
    The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease
    (Public Library of Science, 2015) Kim, Young-Won; Yun, Seok Joong; Jeong, Phildu; Kim, Seon-Kyu; Kim, Seon-Young; Yan, Chunri; Seo, Sung Phil; Lee, Sang Keun; Kim, Jayoung; Kim, Wun-Jae
    Previous studies have shown that c-MET is overexpressed in cases of aggressive bladder cancer (BCa). Identification of crosstalk between c-MET and other RTKs such as AXL and PDGFR suggest that c-MET network genes (c-MET-AXL-PDGFR) may be clinically relevant to BCa. Here, we examine whether expression of c-MET network genes can be used to identify BCa patients at increased risk of developing aggressive disease. In vitro analysis, c-MET knockdown suppressed cell proliferation, invasion, and migration, and increased sensitivity to cisplatin-induced apoptosis. In addition, c-MET network gene (c-MET, AXL, and PDGFR) expression allowed discrimination of BCa tissues from normal control tissues and appeared to predict poor disease progression in non-muscle invasive BCa patients and poor overall survival in muscle invasive BCa patients. These results suggest that c-MET network gene expression is a novel prognostic marker for predicting which BCa patients have an increased risk of developing aggressive disease. These genes might be a useful marker for co-targeting therapy, and are expected to play an important role in improving both response to treatment and survival of BCa patients.
  • Thumbnail Image
    Publication
    Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes
    (Nature Publishing Group, 2015) Morley, Samantha; You, Sungyong; Pollan, Sara; Choi, Jiyoung; Zhou, Bo; Hager, Martin H.; Steadman, Kenneth; Spinelli, Cristiana; Rajendran, Kavitha; Gertych, Arkadiusz; Kim, Jayoung; Adam, Rosalyn; Yang, Wei; Krishnan, Ramaswamy; Knudsen, Beatrice S.; Di Vizio, Dolores; Freeman, Michael R.
    Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors.
  • Thumbnail Image
    Publication
    Metabolomics Insights Into Pathophysiological Mechanisms of Interstitial Cystitis
    (Korean Continence Society, 2014) Fiehn, Oliver; Kim, Jayoung
    Interstitial cystitis (IC), also known as painful bladder syndrome or bladder pain syndrome, is a chronic lower urinary tract syndrome characterized by pelvic pain, urinary urgency, and increased urinary frequency in the absence of bacterial infection or identifiable clinicopathology. IC can lead to long-term adverse effects on the patient's quality of life. Therefore, early diagnosis and better understanding of the mechanisms underlying IC are needed. Metabolomic studies of biofluids have become a powerful method for assessing disease mechanisms and biomarker discovery, which potentially address these important clinical needs. However, limited intensive metabolic profiles have been elucidated in IC. The article is a short review on metabolomic analyses that provide a unique fingerprint of IC with a focus on its use in determining a potential diagnostic biomarker associated with symptoms, a response predictor of therapy, and a prognostic marker.
  • Thumbnail Image
    Publication
    Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells
    (BioMed Central, 2014) Yang, Wei; Ramachandran, Aruna; You, Sungyong; Jeong, HyoBin; Morley, Samantha; Mulone, Michelle D; Logvinenko, Tanya; Kim, Jayoung; Hwang, Daehee; Freeman, Michael R.; Adam, Rosalyn
    Background: Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific components within these networks could be exploited for therapeutic benefit has been fully elucidated. Results: Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels. Proliferation, migration and angiogenesis were the biological processes most significantly associated with this signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo. Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary for PDGF-stimulated lamellipodium formation. Conclusions: These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological intervention in fibroproliferative expansion of smooth muscle, and potentially in cancers in which PDGFR-dependent signaling or MYC activation promote tumor progression.
  • Thumbnail Image
    Publication
    Virus encoded circulatory miRNAs for early detection of prostate cancer
    (BioMed Central, 2015) Kim, Jayoung; Yun, Seok Joong; Kim, Wun-Jae
    Background: Prostate cancer (PCa) is the most commonly diagnosed cancer and kills about 28,000 American men annually. Although progress has been made in understanding the molecular features of different forms of the disease, PCa is considered incurable when it becomes resistant to standard therapies. Prostate specific antigen (PSA) test has been a gold standard of diagnosis for PCa, however, it can result in lead to the unnecessary biopsies and treatment of indolent cancers due to the low specificity. Thus, the limitations of PSA screening for PCa have prompted much focus on strategies how to enhance the accuracy of PSA for distinction between aggressive and indolent cancers. Discussion Studies of miRNAs in PCa patients have suggested differentially expressed miRNAs between healthy controls and those with PCa, providing potential biomarker candidates using body fluids including urine and blood. Virus infection has been considered to associate with PCa incidence. Virus infected PCa cells may shed extracellular vesicles and communicate with neighboring cells, which were not infected yet, however, no mechanistic approaches were performed to understand the biology. The miRNAs composition in the shedding extracellular vesicles, and its role in PCa are completely undefined. In the near future, new insights to connect between the viral derived miRNAs and PCa progression might provide an opportunity to diagnose, risk prediction and therapeutic strategies. Summary The goal of this debate article is to provide a short review on miRNAs, virus infection and viral encoded miRNAs in PCa, with a primary focus on circulating miRNAs as potential non-invasive biomarkers for PCa patients.
  • Thumbnail Image
    Publication
    Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers
    (Korean Continence Society, 2015) Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae
    Purpose: MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. Methods: In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. Results: The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Conclusions: Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone.
  • Thumbnail Image
    Publication
    A Synthetic Form of Frizzled 8-Associated Antiproliferative Factor Enhances p53 Stability through USP2a and MDM2
    (Public Library of Science, 2012) Kim, Jayoung; Keay, Susan K.; You, Sungyong; Loda, Massimo; Freeman, Michael R.
    Frizzled 8-associated Antiproliferative Factor (APF) is a sialoglycopeptide urinary biomarker of interstitial cystitis/painful bladder syndrome (IC/PBS), a chronic condition of unknown etiology with variable symptoms that generally include pelvic and/or perineal pain, urinary frequency, and urgency. We previously reported that native human APF suppresses the proliferation of normal bladder epithelial cells through a mechanism that involves increased levels of p53. The goal of this study was to delineate the regulatory mechanism whereby p53 expression is regulated by APF. Two APF-responsive cell lines (T24 bladder carcinoma cells and the immortalized human bladder epithelial cell line, TRT-HU1) were treated with asialo-APF (as-APF), a chemically synthesized form of APF. Biochemical analysis revealed that as-APF increased p53 levels in two ways: by decreasing ubiquitin specific protease 2a (USP2a) expression leading to enhanced ubiquitination of murine double minute 2 E3 ubiquitin ligase (MDM2), and by suppressing association of p53 with MDM2, thus impairing p53 ubiquitination. Biological responses to as-APF were suppressed by increased expression of wild type, but not mutant USP2a, which enhanced cell growth via upregulation of a cell cycle mediator, cyclin D1, at both transcription and protein levels. Consistent with this, gene silencing of USP2a with siRNA arrested cell proliferation. Our findings suggest that APF upregulates cellular p53 levels via functional attenuation of the USP2a-MDM2 pathway, resulting in p53 accumulation and growth arrest. These data also imply that targeting USP2a, MDM2, p53 and/or complex formation by these molecules may be relevant in the development of novel therapeutic approaches to IC/PBS.