Person: MacFadden, Douglas
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
MacFadden
First Name
Douglas
Name
MacFadden, Douglas
2 results
Search Results
Now showing 1 - 2 of 2
Publication SHRINE: Enabling Nationally Scalable Multi-Site Disease Studies(Public Library of Science, 2013) McMurry, Andrew J.; Murphy, Shawn; MacFadden, Douglas; Weber, Griffin; Simons, William; Orechia, John; Bickel, Jonathan; Wattanasin, Nich; Gilbert, Clint; Trevvett, Philip; Churchill, Susanne; Kohane, IsaacResults of medical research studies are often contradictory or cannot be reproduced. One reason is that there may not be enough patient subjects available for observation for a long enough time period. Another reason is that patient populations may vary considerably with respect to geographic and demographic boundaries thus limiting how broadly the results apply. Even when similar patient populations are pooled together from multiple locations, differences in medical treatment and record systems can limit which outcome measures can be commonly analyzed. In total, these differences in medical research settings can lead to differing conclusions or can even prevent some studies from starting. We thus sought to create a patient research system that could aggregate as many patient observations as possible from a large number of hospitals in a uniform way. We call this system the ‘Shared Health Research Information Network’, with the following properties: (1) reuse electronic health data from everyday clinical care for research purposes, (2) respect patient privacy and hospital autonomy, (3) aggregate patient populations across many hospitals to achieve statistically significant sample sizes that can be validated independently of a single research setting, (4) harmonize the observation facts recorded at each institution such that queries can be made across many hospitals in parallel, (5) scale to regional and national collaborations. The purpose of this report is to provide open source software for multi-site clinical studies and to report on early uses of this application. At this time SHRINE implementations have been used for multi-site studies of autism co-morbidity, juvenile idiopathic arthritis, peripartum cardiomyopathy, colorectal cancer, diabetes, and others. The wide range of study objectives and growing adoption suggest that SHRINE may be applicable beyond the research uses and participating hospitals named in this report.Publication The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders(Public Library of Science, 2012) Wattanasin, Nich; Churchill, Susanne; Kohane, Isaac; McMurry, Andrew; MacFadden, Douglas; Rappaport, Leonard; Kunkel, Louis; Bickel, Jonathan; Spence, Sarah; Murphy, Shawn; Weber, GriffinObjectives: Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. Study Design: A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18–34 years) individuals with ASD was compared. Results: 19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58–14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89–2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13–0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72–6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41–10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3–0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26–0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79–1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI −0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0–17 vs 18–34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly. Conclusions: The comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for.