Person: Gabriely, Galina
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gabriely
First Name
Galina
Name
Gabriely, Galina
5 results
Search Results
Now showing 1 - 5 of 5
Publication Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia(2014) Butovsky, Oleg; Jedrychowski, Mark; Moore, Craig S.; Cialic, Ron; Lanser, Amanda J.; Gabriely, Galina; Koeglsperger, Thomas; Dake, Ben; Wu, Pauline M.; Doykan, Camille E.; Fanek, Zain; Liu, LiPing; Chen, Zhuoxun; Rothstein, Jeffrey D.; Ransohoff, Richard M.; Gygi, Steven; Antel, Jack P.; Weiner, HowardMicroglia are myeloid cells of the central nervous system (CNS) that participate both in normal CNS function and disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia vs. myeloid and other immune cells. Out of 239 genes, 106 were enriched in microglia as compared to astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS and was also observed in human microglia. Based on this signature, we found a crucial role for TGF-β in microglial biology that included: 1) the requirement of TGF-β for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia; and 2) the absence of microglia in CNS TGF-β1 deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling which provides insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.Publication Identification and characterization of latency-associated peptide-expressing γδ T cells(Nature Publishing Group, 2015) Rezende, Rafael; da Cunha, Andre P.; Kuhn, Chantal; Rubino, Stephen; M'Hamdi, Hanane; Gabriely, Galina; Vandeventer, Tyler; Liu, Shirong; Cialic, Ron; Pinheiro-Rosa, Natalia; Oliveira, Rafael P.; Gaublomme, Jellert T.; Obholzer, Nikolaus; Kozubek, James; Pochet, Nathalie; Faria, Ana M. C.; Weiner, Howardγδ T cells are a subset of lymphocytes specialized in protecting the host against pathogens and tumours. Here we describe a subset of regulatory γδ T cells that express the latency-associated peptide (LAP), a membrane-bound TGF-β1. Thymic CD27+IFN-γ+CCR9+α4β7+TCRγδ+ cells migrate to the periphery, particularly to Peyer's patches and small intestine lamina propria, where they upregulate LAP, downregulate IFN-γ via ATF-3 expression and acquire a regulatory phenotype. TCRγδ+LAP+ cells express antigen presentation molecules and function as antigen presenting cells that induce CD4+Foxp3+ regulatory T cells, although TCRγδ+LAP+ cells do not themselves express Foxp3. Identification of TCRγδ+LAP+ regulatory cells provides an avenue for understanding immune regulation and biologic processes linked to intestinal function and disease.Publication MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma(Impact Journals LLC, 2015) Teplyuk, Nadiya M.; Uhlmann, Erik; Wong, Andus Hon-Kit; Karmali, Priya; Basu, Meenakshi; Gabriely, Galina; Jain, Anant; Wang, Yang; Chiocca, E.; Stephens, Robert; Marcusson, Eric; Yi, Ming; Krichevsky, AnnaMicroRNA-10b (miR-10b) is commonly elevated in glioblastoma (GBM), while not expressed in normal brain tissues. Targeted inhibition of miR-10b has pleiotropic effects on GBM derived cell lines, it reduces GBM growth in animal models, but does not affect normal neurons and astrocytes. This data raises the possibility of developing miR-10b-targeting GBM therapy. However, the mechanisms contributing to miR-10b-mediated glioma cell survival and proliferation are unexplored. We found that inhibition of miR-10b has distinct effects on specific glioma cell lines. In cells expressing high levels of tumor suppressor p21WAF1/Cip1, it represses E2F1-mediated transcription, leading to down-regulation of multiple E2F1 target genes encoding for S-phase specific proteins, epigenetic modulators, and miRNAs (e.g. miR-15/16), and thereby stalling progression through the S-phase of cell cycle. Subsequently, miR-15/16 activities are reduced and many of their direct targets are de-repressed, including ubiquitin ligase FBXW7 that destabilizes Cyclin E. Conversely, GBM cells expressing low p21 level, or after p21 knock-down, exhibit weaker or no E2F1 response to miR-10b inhibition. Comparative analysis of The Cancer Genome Atlas revealed a strong correlation between miR-10b and multiple E2F target genes in GBM and low-grade glioma. Taken together, these findings indicate that miR-10b regulates E2F1-mediated transcription in GBM, in a p21-dependent fashion.Publication Therapeutic potential of targeting microRNA‐10b in established intracranial glioblastoma: first steps toward the clinic(John Wiley and Sons Inc., 2016) Teplyuk, Nadiya M; Uhlmann, Erik; Gabriely, Galina; Volfovsky, Natalia; Wang, Yang; Teng, Jian; Karmali, Priya; Marcusson, Eric; Peter, Merlene; Mohan, Athul; Kraytsberg, Yevgenya; Cialic, Ron; Chiocca, E Antonio; Godlewski, Jakub; Tannous, Bakhos; Krichevsky, AnnaAbstract MicroRNA‐10b (miR‐10b) is a unique oncogenic miRNA that is highly expressed in all GBM subtypes, while absent in normal neuroglial cells of the brain. miR‐10b inhibition strongly impairs proliferation and survival of cultured glioma cells, including glioma‐initiating stem‐like cells (GSC). Although several miR‐10b targets have been identified previously, the common mechanism conferring the miR‐10b‐sustained viability of GSC is unknown. Here, we demonstrate that in heterogeneous GSC, miR‐10b regulates cell cycle and alternative splicing, often through the non‐canonical targeting via 5′UTRs of its target genes, including MBNL1‐3, SART3, and RSRC1. We have further assessed the inhibition of miR‐10b in intracranial human GSC‐derived xenograft and murine GL261 allograft models in athymic and immunocompetent mice. Three delivery routes for the miR‐10b antisense oligonucleotide inhibitors (ASO), direct intratumoral injections, continuous osmotic delivery, and systemic intravenous injections, have been explored. In all cases, the treatment with miR‐10b ASO led to targets’ derepression, and attenuated growth and progression of established intracranial GBM. No significant systemic toxicity was observed upon ASO administration by local or systemic routes. Our results indicate that miR‐10b is a promising candidate for the development of targeted therapies against all GBM subtypes.Publication miR-21: a small multi-faceted RNA(Blackwell Publishing Ltd, 2009) Krichevsky, Anna; Gabriely, GalinaAbstract More than 1000 microRNAs (miRNAs) are expressed in human cells, some tissue or cell type specific, others considered as house-keeping molecules. Functions and direct mRNA targets for some miRNAs have been relatively well studied over the last years. Every miRNA potentially regulates the expression of numerous protein-coding genes (tens to hundreds), but it has become increasingly clear that not all miRNAs are equally important; diverse high-throughput screenings of various systems have identified a limited number of key functional miRNAs over and over again. Particular miRNAs emerge as principal regulators that control major cell functions in various physiological and pathophysiological settings. Since its identification 3 years ago as the miRNA most commonly and strongly up-regulated in human brain tumour glioblastoma [1], miR-21 has attracted the attention of researchers in various fields, such as development, oncology, stem cell biology and aging, becoming one of the most studied miRNAs, along with let-7, miR-17–92 cluster (‘oncomir-1’), miR-155 and a few others. However, an miR-21 knockout mouse has not yet been generated, and the data about miR-21 functions in normal cells are still very limited. In this review, we summarise the current knowledge of miR-21 functions in human disease, with an emphasis on its regulation, oncogenic role, targets in human cancers, potential as a disease biomarker and novel therapeutic target in oncology.