Person:
Josephson, Lee

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Josephson

First Name

Lee

Name

Josephson, Lee

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Publication
    An Integrin-Targeted, Highly Diffusive Construct for Photodynamic Therapy
    (Nature Publishing Group UK, 2017) Klein, Oliver J.; Yuan, Hushan; Nowell, Nicholas H.; Kaittanis, Charalambos; Josephson, Lee; Evans, Conor
    Targeted antineoplastic agents show great promise in the treatment of cancer, having the ability to impart cytotoxicity only to specific tumor types. However, these therapies do not experience uniform uptake throughout tumors, leading to sub-lethal cell killing that can impart treatment resistance, and cause problematic off-target effects. Here we demonstrate a photodynamic therapy construct that integrates both a cyclic RGD moiety for integrin-targeting, as well as a 5 kDa PEG chain that passivates the construct and enables its rapid diffusion throughout tumors. PEGylation of the photosensitizer construct was found to prevent photosensitizer aggregation, boost the generation of cytotoxic reactive radical species, and enable the rapid uptake of the construct into cells throughout large (>500 µm diameter) 3D tumor spheroids. Replacing the cyclic RGD with the generic RAD peptide led to the loss of cellular uptake in 3D culture, demonstrating the specificity of the construct. Photodynamic therapy with the construct was successful in inducing cytotoxicity, which could be competitively blocked by a tenfold concentration of free cyclic RGD. This construct is a first-of-its kind theranostic that may serve as a new approach in our growing therapeutic toolbox.
  • Thumbnail Image
    Publication
    PEG-Like Nanoprobes: Multimodal, Pharmacokinetically and Optically Tunable Nanomaterials
    (Public Library of Science, 2014) Guo, Yanyan; Yuan, Hushan; Claudio, Natalie M.; Kura, Sreekanth; Shakerdge, Naomi; Mempel, Thorsten; Bacskai, Brian; Josephson, Lee
    “PEG-like Nanoprobes” (PN’s) are pharmacokinetically and optically tunable nanomaterials whose disposition in biological systems can be determined by fluorescence or radioactivity. PN’s feature a unique design where a single PEG polymer surrounds a short fluorochrome and radiometal bearing peptide, and endows the resulting nanoprobe with pharmacokinetic control (based on molecular weight of the PEG selected) and optical tunability (based on the fluorochrome selected), while the chelate provides a radiolabeling option. PN’s were used to image brain capillary angiography (intravital 2-photon microscopy), tumor capillary permeability (intravital fluorescent microscopy), and the tumor enhanced permeability and retention (EPR) effect (111In-PN and SPECT). Clinical applications of PN’s include use as long blood half-life fluorochromes for intraoperative angiography, for measurements of capillary permeability in breast cancer lesions, and to image EPR by SPECT, for stratifying patient candidates for long-circulating nanomedicines that may utilize the EPR mechanism.
  • Thumbnail Image
    Publication
    Effects of ferumoxytol on quantitative PET measurements in simultaneous PET/MR whole-body imaging: a pilot study in a baboon model
    (Springer International Publishing, 2015) Borra, Ronald JH; Cho, Hoon-Sung; Bowen, Spencer L; Attenberger, Ulrike; Arabasz, Grae; Catana, Ciprian; Josephson, Lee; Rosen, Bruce; Guimaraes, Alexander R; Hooker, Jacob
    Background: Simultaneous PET/MR imaging depends on MR-derived attenuation maps (mu-maps) for accurate attenuation correction of PET data. Currently, these maps are derived from gradient-echo-based MR sequences, which are sensitive to susceptibility changes. Iron oxide magnetic nanoparticles have been used in the measurement of blood volume, tumor microvasculature, tumor-associated macrophages, and characterizing lymph nodes. Our aim in this study was to assess whether the susceptibility effects associated with iron oxide nanoparticles can potentially affect measured 18F-FDG PET standardized uptake values (SUV) through effects on MR-derived attenuation maps. Methods: The study protocol was approved by the Institutional Animal Care and Use Committee. Using a Siemens Biograph mMR PET/MR scanner, we evaluated the effects of increasing concentrations of ferumoxytol and ferumoxytol aggregates on MR-derived mu-maps using an agarose phantom. In addition, we performed a baboon experiment evaluating the effects of a single i.v. ferumoxytol dose (10 mg/kg) on the liver, spleen, and pancreas 18F-FDG SUV at baseline (ferumoxytol-naïve), within the first hour and at 1, 3, 5, and 11 weeks. Results: Phantom experiments showed mu-map artifacts starting at ferumoxytol aggregate concentrations of 10 to 20 mg/kg. The in vivo baboon data demonstrated a 53% decrease of observed 18F-FDG SUV compared to baseline within the first hour in the liver, persisting at least 11 weeks. Conclusions: A single ferumoxytol dose can affect measured SUV for at least 3 months, which should be taken into account when administrating ferumoxytol in patients needing sequential PET/MR scans. Advances in knowledge 1. Ferumoxytol aggregates, but not ferumoxytol alone, produce significant artifacts in MR-derived attenuation correction maps at approximate clinical dose levels of 10 mg/kg. 2. When performing simultaneous whole-body 18F-FDG PET/MR, a single dose of ferumoxytol can result in observed SUV decreases up to 53%, depending on the amount of ferumoxytol aggregates in the studied tissue. Implications for patient care Administration of a single, clinically relevant, dose of ferumoxytol can potentially result in changes in observed SUV for a prolonged period of time in the setting of simultaneous PET/MR. These potential changes should be considered in particular when administering ferumoxytol to patients with expected future PET/MR studies, as ferumoxytol-induced SUV changes might interfere with therapy assessment. Electronic supplementary material The online version of this article (doi:10.1186/s40658-015-0109-0) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform
    (Springer, 2014) van Oosterom, Matthias N; Kreuger, Rob; Buckle, Tessa; Mahn, Wendy A; Bunschoten, Anton; Josephson, Lee; van Leeuwen, Fijs WB; Beekman, Freek J
    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results. Methods: An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors. Results: Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence). Conclusions: We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.
  • Thumbnail Image
    Publication
    Theranostic Nucleic Acid Binding Nanoprobe Exerts Anti-inflammatory and Cytoprotective Effects in Ischemic Injury
    (Ivyspring International Publisher, 2017) Chen, Howard; Yuan, Hushan; Cho, Hoonsung; Feng, Yan; Ngoy, Soeun; Kumar, Anand; Liao, Ronglih; Chao, Wei; Josephson, Lee; Sosnovik, David
    Extracellular nucleic acids are proinflammatory molecules that have been implicated in a diverse range of diseases. We report here the development of a multivalent nucleic acid scavenging nanoprobe, where the fluorochrome thiazole orange (TO) is conjugated to a polymeric 40 kDa dextran carrier. Dextran-TO (Dex-TO) has nanomolar affinity for mammalian and bacterial nucleic acids and attenuates the production of inflammatory cytokines from activated macrophages exposed to DNA and RNA. Mice with myocardial ischemia reperfusion that were treated with Dex-TO showed a decrease in myocardial macrophage infiltration at 24 hours (p<0.05) and a decrease in infarct size (18% ± 9%, p<0.01) on day 7. Dex-TO allows sites of injury to be identified with fluorescence imaging, while simultaneously exerting an anti-inflammatory and cytoprotective effect. Dex-TO could be of significant diagnostic and therapeutic (theranostic) utility in a broad range of conditions including ischemia, trauma, burns, sepsis and autoimmune disease.
  • Thumbnail Image
    Publication
    Quantitative Analysis of Chemotherapeutic Effects in Tumors Using In Vivo Staining and Correlative Histology
    (IOS Press, 2005) Choi, Heung Kook; Yessayan, Doreen; Choi, Hyun Ju; Schellenberger, Eyk; Bogdanov, Alex; Josephson, Lee; Weissleder, Ralph; Ntziachristos, Vasilis
    Aims: To microscopically analyze the chemotherapeutic response of tumors using in vivo staining based on an annexinV-Cy5.5 probe and independently asses their apoptotic count using quantitative histological analysis. Methods:: Lewis Lung Carcinomas cells, that are sensitive (CS-LLC) and resistant (CR-LLC) to chemotherapy were implanted in nude mice and grown to tumours. Mice were treated with cyclophosphamide and injected with a Cy5.5-annexinV fluorescent probe. In vivo imaging was performed using Fluorescence Molecular Tomography. Subsequently tumours were excised and prepared for histology. The histological tumour sections were stained for apoptosis using a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. A minimum of ten tissue sections were analyzed per tumour for apoptosis quantification by TUNEL staining and corresponding Cy5.5 distribution. Results:: We detected higher levels of apoptosis and corresponding higher levels of Cy5.5 fluorescence in the CS-LLC vs. the CR-LLC tumours. The cell count rate on CS-LLC sections over CR-LLC was found to be ∼2 :1 where the corresponding area observed on Cy5.5 distribution measurements revealed a ∼1.7 :1 ratio of CS-LLC over CR-LLC. These observations are consistent with the higher apoptotic index expected from the CS-LLC cell line. Conclusions:: Quantitative analysis of histological slices revealed higher fluorescence and higher apoptotic count in the CS-LLC tumour images compared to the CR-LLC tumour images. These observations demonstrate that the annexinV-Cy5.5 probe sensed the chemotherapeutic effect of cyclophospamide and further confirmed in vivo FMT measurements.
  • Thumbnail Image
    Publication
    Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02778g Click here for additional data file.
    (Royal Society of Chemistry, 2014) Boros, Eszter; Bowen, Alice M.; Josephson, Lee; Vasdev, Neil; Holland, Jason P.
    A novel reaction for chelate-free, heat-induced metal ion binding and radiolabeling of ultra-small paramagnetic iron oxide nanoparticles (USPIOs) has been established. Radiochemical and non-radioactive labeling studies demonstrated that the reaction has a wide chemical scope and is applicable to p-, d- and f-block metal ions with varying ionic sizes and formal oxidation states from 2+ to 4+. Radiolabeling studies found that 89Zr–Feraheme (89Zr–FH or 89Zr–ferumoxytol) can be isolated in 93 ± 3% radiochemical yield (RCY) and >98% radiochemical purity using size-exclusion chromatography. 89Zr–FH was found to be thermodynamically and kinetically stable in vitro using a series of ligand challenge and plasma stability tests, and in vivo using PET/CT imaging and biodistribution studies in mice. Remarkably, ICP-MS and radiochemistry experiments showed that the same reaction conditions used to produce 89Zr–FH can be employed with different radionuclides to yield 64Cu–FH (66 ± 6% RCY) and 111In–FH (91 ± 2% RCY). Electron magnetic resonance studies support a mechanism of binding involving metal ion association with the surface of the magnetite crystal core. Collectively, these data suggest that chelate-free labeling methods can be employed to facilitate clinical translation of a new class of multimodality PET/MRI radiotracers derived from metal-based nanoparticles. Further, this discovery is likely to have broader implications in drug delivery, metal separation science, ecotoxicology of nanoparticles and beyond.
  • Thumbnail Image
    Publication
    Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials
    (Public Library of Science, 2017) Yuan, Hushan; Wilks, Moses; El Fakhri, Georges; Normandin, Marc; Kaittanis, Charalambos; Josephson, Lee
    A key advantage of nanomaterials for biomedical applications is their ability to feature multiple small reporter groups (multimodality), or combinations of reporter groups and therapeutic agents (multifunctionality), while being targeted to cell surface receptors. Here a facile combination of techniques for the syntheses of multimodal, targeted nanoparticles (NPs) is presented, whereby heat-induced-radiolabeling (HIR) labels NPs with radiometals and so-called click chemistry is used to attach bioactive groups to the NP surface. Click-reactive alkyne or azide groups were first attached to the nonradioactive clinical Feraheme (FH) NPs. Resulting “Alkyne-FH” and “Azide-FH” intermediates, like the parent NP, tolerated 89Zr labeling by the HIR method previously described. Subsequently, biomolecules were quickly conjugated to the radioactive NPs by either copper-catalyzed or copper-free click reactions with high efficiency. Synthesis of the Alkyne-FH or Azide-FH intermediates, followed by HIR and then by click reactions for biomolecule attachment, provides a simple and potentially general path for the synthesis of multimodal, multifunctional, and targeted NPs for biomedical applications.
  • Thumbnail Image
    Publication
    Use of a Single Hybrid Imaging Agent for Integration of Target Validation with In Vivo and Ex Vivo Imaging of Mouse Tumor Lesions Resembling Human DCIS
    (Public Library of Science, 2013) Buckle, Tessa; Kuil, Joeri; van den Berg, Nynke S.; Bunschoten, Anton; Lamb, Hildo J.; Yuan, Hushan; Josephson, Lee; Jonkers, Jos; Borowsky, Alexander D.; van Leeuwen, Fijs W. B.
    Screening of biomarker expression levels in tumor biopsy samples not only provides an assessment of prognostic and predictive factors, but may also be used for selection of biomarker-specific imaging strategies. To assess the feasibility of using a biopsy specimen for a personalized selection of an imaging agent, the chemokine receptor 4 (CXCR4) was used as a reference biomarker. Methods: A hybrid CXCR4 targeting peptide (MSAP-Ac-TZ14011) containing a fluorescent dye and a chelate for radioactive labeling was used to directly compare initial flow cytometry–based target validation in fresh tumor tissue to \(in\) \(vivo\) single photon emission computed tomography (SPECT) imaging and \(in\) \(vivo\) and \(ex\) \(vivo\) fluorescence imaging. Results: Flow cytometric analysis of mouse tumor derived cell suspensions enabled discrimination between 4T1 control tumor lesions (with low levels of CXCR4 expression) and CXCR4 positive early, intermediate and late stage MIN-O lesions based on their CXCR4 expression levels; CXCR4\(^{basal}\), CXCR4\(^+\) and CXCR4\(^{++}\) cell populations could be accurately discriminated. Mean fluorescent intensity ratios between expression in MIN-O and 4T1 tissue found with flow cytometry were comparable to ratios obtained with in vivo SPECT/CT and fluorescence imaging, ex vivo fluorescence evaluation and standard immunohistochemistry. Conclusion: The hybrid nature of a targeting imaging agent like MSAP-Ac-TZ14011 enables integration of target selection, in vivo imaging and ex vivo validation using a single agent. The use of biopsy tissue for biomarker screening can readily be expanded to other targeting hybrid imaging agents and can possibly help increase the clinical applicability of tumor-specific imaging approaches.
  • Thumbnail Image
    Publication
    Theranostic Imaging of the Kinases and Proteases that Modulate Cell Death and Survival
    (Ivyspring International Publisher, 2012) Chen, Howard; Yuan, Hushan; Josephson, Lee; Sosnovik, David
    Several signaling cascades are involved in cell death, with a significant amount of crosstalk between them. Despite the complexity of these cascades several key pro-survival and pro-death players have been identified. These include PI3-kinase, AKT and caspase-3. Here we review the approaches used to date to perform molecular imaging of these important targets. We focus in particular on approaches that include the possibility of modulating the activity of these kinases and proteases in a theranostic approach.