Person:
Lu, J

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Lu

First Name

J

Name

Lu, J

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Filamin B Regulates Chondrocyte Proliferation and Differentiation through Cdk1 Signaling
    (Public Library of Science, 2014) Hu, Jianjun; Lu, J; Lian, Gewei; Zhang, Jingping; Hecht, Jonathan; Sheen, Volney
    Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB−/− mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1+/Col10a1+ overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins.
  • Thumbnail Image
    Publication
    Lysosomal Activity Associated with Developmental Axon Pruning
    (Society for Neuroscience, 2008) Song, Jiewuh; Misgeld, T.; Kang, H; Knecht, S.; Lu, J; Cao, Y.; Cotman, Susan; Bishop, D. L.; Lichtman, Jeff
    Clearance of cellular debris is a critical feature of the developing nervous system, as evidenced by the severe neurological consequences of lysosomal storage diseases in children. An important developmental process, which generates considerable cellular debris, is synapse elimination, in which many axonal branches are pruned. The fate of these pruned branches is not known. Here, we investigate the role of lysosomal activity in neurons and glia in the removal of axon branches during early postnatal life. Using a probe for lysosomal activity, we observed robust staining associated with retreating motor axons. Lysosomal function was involved in axon removal because retreating axons were cleared more slowly in a mouse model of a lysosomal storage disease. In addition, we found lysosomal activity in the cerebellum at the time of, and at sites where, climbing fibers are eliminated. We propose that lysosomal activity is a central feature of synapse elimination. Moreover, staining for lysosomal activity may serve as a marker for regions of the developing nervous system undergoing axon pruning.
  • Thumbnail Image
    Publication
    Combination Therapy with Normobaric Oxygen (NBO) Plus Thrombolysis in Experimental Ischemic Stroke
    (BioMed Central, 2009) Fujiwara, Norio; Murata, Yoshihiro; Arai, Ken; Egi, Yasuhiro; Lu, J; Wu, Ona; Singhal, Aneesh; Lo, Eng
    Background: The widespread use of tissue plasminogen activator (tPA), the only FDA-approved acute stroke treatment, remains limited by its narrow therapeutic time window and related risks of brain hemorrhage. Normobaric oxygen therapy (NBO) may be a useful physiological strategy that slows down the process of cerebral infarction, thus potentially allowing for delayed or more effective thrombolysis. In this study we investigated the effects of NBO started simultaneously with intravenous tPA, in spontaneously hypertensive rats subjected to embolic middle cerebral artery (MCA) stroke. After homologous clot injection, animals were randomized into different treatment groups: saline injected at 1 hour; tPA at 1 hour; saline at 1 hour plus NBO; tPA at 1 hour plus NBO. NBO was maintained for 3 hours. Infarct volume, brain swelling and hemorrhagic transformation were quantified at 24 hours. Outcome assessments were blinded to therapy. Results: Upon clot injection, cerebral perfusion in the MCA territory dropped below 20% of pre-ischemic baselines. Both tPA-treated groups showed effective thrombolysis (perfusion restored to nearly 100%) and smaller infarct volumes (379 ± 57 mm3 saline controls; 309 ± 58 mm3 NBO; 201 ± 78 mm3 tPA; 138 ± 30 mm3 tPA plus NBO), showing that tPA-induced reperfusion salvages ischemic tissue and that NBO does not significantly alter this neuroprotective effect. NBO had no significant effect on hemorrhagic conversion, brain swelling, or mortality. Conclusion: NBO can be safely co-administered with tPA. The efficacy of tPA thrombolysis is not affected and there is no induction of brain hemorrhage or edema. These experimental results require clinical confirmation.