Person:
Stegmaier, Kimberly

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Stegmaier

First Name

Kimberly

Name

Stegmaier, Kimberly

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    Publication
    Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase
    (Impact Journals LLC, 2017) Weisberg, Ellen; Puissant, Alexandre; Stone, Richard; Sattler, Martin; Buhrlage, Sara; Yang, Jing; Manley, Paul W.; Meng, Chengcheng; Buonopane, Michael; Daley, John F.; Lazo, Suzan; Wright, Renee; Weinstock, David; Christie, Amanda L.; Stegmaier, Kimberly; Griffin, James
    Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.
  • Thumbnail Image
    Publication
    SYK Regulates mTOR Signaling in AML
    (2014) Carnevale, Julia; Ross, Linda; Puissant, Alexandre; Banerji, Versha; Stone, Richard; DeAngelo, Daniel; Ross, Kenneth; Stegmaier, Kimberly
    Spleen Tyrosine Kinase (SYK) was recently identified as a new target in acute myeloid leukemia (AML); however, its mechanistic role in this disease is poorly understood. Based on the known interaction between SYK and mTOR signaling in lymphoma, we hypothesized that SYK may regulate mTOR signaling in AML. Both small-molecule inhibition of SYK and SYK-directed shRNA suppressed mTOR and its downstream signaling effectors, as well as its upstream activator, AKT. Moreover, the inhibition of multiple nodes of the PI3K signaling pathway enhanced the effects of SYK suppression on AML cell viability and differentiation. Evaluation of the collateral MAPK pathway revealed a heterogeneous response to SYK inhibition in AML with down-regulation of MEK and ERK phosphorylation in some AML cell lines but a paradoxical increase in MEK/ERK phosphorylation in RAS-mutated AML. These studies reveal SYK as a regulator of mTOR and MAPK signaling in AML and demonstrate that inhibition of PI3K pathway activity enhances the effects of SYK inhibition on AML cell viability and differentiation.
  • Thumbnail Image
    Publication
    Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 lysine 27 trimethylation
    (2014) Lane, Andrew; Chapuy, Bjoern; Lin, Charles Y.; Tivey, Trevor; Li, Hubo; Townsend, Elizabeth C.; van Bodegom, Diederik; Day, Tovah; Wu, Shuo-Chieh; Liu, Huiyun; Yoda, Akinori; Alexe, Gabriela; Schinzel, Anna; Sullivan, Timothy J.; Malinge, Sébastien; Taylor, Jordan E.; Stegmaier, Kimberly; Jaffe, Jacob D.; Bustin, Michael; te Kronnie, Geertruy; Izraeli, Shai; Harris, Marian; Stevenson, Kristen E.; Neuberg, Donna; Silverman, Lewis; Sallan, Stephen; Bradner, James E; Hahn, William; Crispino, John D.; Pellman, David; Weinstock, David
    Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL)1 and polysomy 21 is the most frequent somatic aneuploidy amongst all B-ALLs2. Yet, the mechanistic links between chr.21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chr.21q22 confers murine progenitor B cell self-renewal in vitro, maturation defects in vivo, and B-ALL with either BCR-ABL or CRLF2 with activated JAK2. Chr.21q22 triplication suppresses H3K27me3 in progenitor B cells and B-ALLs, and “bivalent” genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Strikingly, human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Finally, overexpression of HMGN1, a nucleosome remodeling protein encoded on chr.21q223–5, suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo.
  • Thumbnail Image
    Publication
    The Genomic Landscape of Juvenile Myelomonocytic Leukemia
    (2015) Stieglitz, Elliot; Taylor-Weiner, Amaro N.; Chang, Tiffany Y.; Gelston, Laura C.; Wang, Yong-Dong; Mazor, Tali; Esquivel, Emilio; Yu, Ariel; Seepo, Sara; Olsen, Scott; Rosenberg, Mara; Archambeault, Sophie L.; Abusin, Ghada; Beckman, Kyle; Brown, Patrick A.; Briones, Michael; Carcamo, Benjamin; Cooper, Todd; Dahl, Gary V.; Emanuel, Peter D.; Fluchel, Mark N.; Goyal, Rakesh K.; Hayashi, Robert J.; Hitzler, Johann; Hugge, Christopher; Liu, Y. Lucy; Messinger, Yoav H.; Mahoney, Donald H.; Monteleone, Philip; Nemecek, Eneida R.; Roehrs, Philip A.; Schore, Reuven J.; Stine, Kimo C.; Takemoto, Clifford M.; Toretsky, Jeffrey A.; Costello, Joseph F.; Olshen, Adam B.; Stewart, Chip; Li, Yongjin; Ma, Jing; Gerbing, Robert B.; Alonzo, Todd A.; Getz, Gad; Gruber, Tanja; Golub, Todd; Stegmaier, Kimberly; Loh, Mignon L.
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.
  • Thumbnail Image
    Publication
    Genetic and Proteomic Approaches to Identify Cancer Drug Targets
    (Nature Publishing Group, 2012) Roti, Giovanni; Stegmaier, Kimberly
    While target-based small-molecule discovery has taken centre-stage in the pharmaceutical industry, there are many cancer-promoting proteins not easily addressed with a traditional target-based screening approach. In order to address this problem, as well as to identify modulators of biological states in the absence of knowing the protein target of the state switch, alternative phenotypic screening approaches, such as gene expression-based and high-content imaging, have been developed. With this renewed interest in phenotypic screening, however, comes the challenge of identifying the binding protein target(s) of small-molecule hits. Emerging technologies have the potential to improve the process of target identification. In this review, we discuss the application of genomic (gene expression-based), genetic (short hairpin RNA and open reading frame screening), and proteomic approaches to protein target identification.
  • Thumbnail Image
    Publication
    Signature-Based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma
    (Public Library of Science, 2007) Stegmaier, Kimberly; Wong, Jenny S; Ross, Kenneth N; Chow, Kwan T; Peck, David; Wright, Renee D; Lessnick, Stephen L; Kung, Andrew; Golub, Todd
    Background: The presence of tumor-specific mutations in the cancer genome represents a potential opportunity for pharmacologic intervention to therapeutic benefit. Unfortunately, many classes of oncoproteins (e.g., transcription factors) are not amenable to conventional small-molecule screening. Despite the identification of tumor-specific somatic mutations, most cancer therapy still utilizes nonspecific, cytotoxic drugs. One illustrative example is the treatment of Ewing sarcoma. Although the EWS/FLI oncoprotein, present in the vast majority of Ewing tumors, was characterized over ten years ago, it has never been exploited as a target of therapy. Previously, this target has been intractable to modulation with traditional small-molecule library screening approaches. Here we describe a gene expression–based approach to identify compounds that induce a signature of EWS/FLI attenuation. We hypothesize that screening small-molecule libraries highly enriched for FDA-approved drugs will provide a more rapid path to clinical application. Methods and Findings: A gene expression signature for the EWS/FLI off state was determined with microarray expression profiling of Ewing sarcoma cell lines with EWS/FLI-directed RNA interference. A small-molecule library enriched for FDA-approved drugs was screened with a high-throughput, ligation-mediated amplification assay with a fluorescent, bead-based detection. Screening identified cytosine arabinoside (ARA-C) as a modulator of EWS/FLI. ARA-C reduced EWS/FLI protein abundance and accordingly diminished cell viability and transformation and abrogated tumor growth in a xenograft model. Given the poor outcomes of many patients with Ewing sarcoma and the well-established ARA-C safety profile, clinical trials testing ARA-C are warranted. Conclusions: We demonstrate that a gene expression–based approach to small-molecule library screening can identify, for rapid clinical testing, candidate drugs that modulate previously intractable targets. Furthermore, this is a generic approach that can, in principle, be applied to the identification of modulators of any tumor-associated oncoprotein in the rare pediatric malignancies, but also in the more common adult cancers.
  • Thumbnail Image
    Publication
    A Method for High-Throughput Gene Expression Signature Analysis
    (BioMed Central, 2006) Peck, David; Crawford, Emily D; Ross, Kenneth N; Stegmaier, Kimberly; Golub, Todd; Lamb, Justin
    Genome-wide transcriptional profiling has shown that different biologic states (for instance, disease and response to pharmacologic manipulation) can be recognized by the expression pattern of relatively small numbers of genes. However, the lack of a practical and cost-effective technology for detection of these gene expression 'signatures' in large numbers of samples has severely limited their exploitation in important medical and pharmaceutical discovery applications. Here, we describe a solution based on the combination of ligation-mediated amplification with an optically addressed microsphere and flow cytometric detection system.
  • Thumbnail Image
    Publication
    High-throughput Gene Expression Profiling of Memory Differentiation in Primary Human T Cells
    (BioMed Central, 2008) Haining, William; Angelosanto, Jill; Brosnahan, Kathleen; Ross, Kenneth; Hahn, Cynthia; Russell, Kate; Drury, Linda; Norton, Stephanie; Nadler, Lee; Stegmaier, Kimberly
    Background: The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1) the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2) a suitable cell-line representative of naive T cells. Results: Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion: This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.
  • Publication
    Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer
    (Elsevier BV, 2013-03-18) Roti, Giovanni; Carlton, Anne; Ross, Kenneth; Markstein, Michele; Pajcini, Kostandin; Su, Angela H.; Perrimon, Norbert; Pear, Warren S.; Kung, Andrew L.; Blacklow, Stephen; Aster, Jon; Stegmaier, Kimberly
    Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. SERCA calcium channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies “credential” SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
  • Thumbnail Image
    Publication
    Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
    (2017) Meyers, Robin M.; Bryan, Jordan G.; McFarland, James M.; Weir, Barbara A.; Sizemore, Ann E.; Xu, Han; Dharia, Neekesh; Montgomery, Phillip G.; Cowley, Glenn S.; Pantel, Sasha; Goodale, Amy; Lee, Yenarae; Ali, Levi D.; Jiang, Guozhi; Lubonja, Rakela; Harrington, William F.; Strickland, Matthew; Wu, Ting; Hawes, Derek; Zhivich, Victor A.; Wyatt, Meghan R.; Kalani, Zohra; Chang, Jaime J.; Okamoto, Michael; Stegmaier, Kimberly; Golub, Todd; Boehm, Jesse S.; Vazquez, Francisca; Root, David E.; Hahn, William; Tsherniak, Aviad
    The CRISPR-Cas9 system has revolutionized gene editing both on single genes and in multiplexed loss-of-function screens, enabling precise genome-scale identification of genes essential to proliferation and survival of cancer cells1,2. However, previous studies reported that a gene-independent anti-proliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, leading to false positive results in copy number amplified regions3,4. We developed CERES, a computational method to estimate gene dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy-number-specific effect. As part of our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this dataset. We found that CERES reduced false positive results and estimated sgRNA activity for both this dataset and previously published screens performed with different sgRNA libraries. Here, we demonstrate the utility of this collection of screens, upon CERES correction, in revealing cancer-type-specific vulnerabilities.