Person:
Zhong, Guisheng

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Zhong

First Name

Guisheng

Name

Zhong, Guisheng

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Developmental mechanism of the periodic membrane skeleton in axons
    (eLife Sciences Publications, Ltd, 2014) Zhong, Guisheng; He, Jiang; Zhou, Ruobo; Lorenzo, Damaris; Babcock, Hazen; Bennett, Vann; Zhuang, Xiaowei
    Actin, spectrin, and associated molecules form a periodic sub-membrane lattice structure in axons. How this membrane skeleton is developed and why it preferentially forms in axons are unknown. Here, we studied the developmental mechanism of this lattice structure. We found that this structure emerged early during axon development and propagated from proximal regions to distal ends of axons. Components of the axon initial segment were recruited to the lattice late during development. Formation of the lattice was regulated by the local concentration of βII spectrin, which is higher in axons than in dendrites. Increasing the dendritic concentration of βII spectrin by overexpression or by knocking out ankyrin B induced the formation of the periodic structure in dendrites, demonstrating that the spectrin concentration is a key determinant in the preferential development of this structure in axons and that ankyrin B is critical for the polarized distribution of βII spectrin in neurites. DOI: http://dx.doi.org/10.7554/eLife.04581.001
  • Thumbnail Image
    Publication
    A PIK3C3–Ankyrin-B–Dynactin pathway promotes axonal growth and multiorganelle transport
    (The Rockefeller University Press, 2014) Lorenzo, Damaris Nadia; Badea, Alexandra; Davis, Jonathan; Hostettler, Janell; He, Jiang; Zhong, Guisheng; Zhuang, Xiaowei; Bennett, Vann
    Axon growth requires long-range transport of organelles, but how these cargoes recruit their motors and how their traffic is regulated are not fully resolved. In this paper, we identify a new pathway based on the class III PI3-kinase (PIK3C3), ankyrin-B (AnkB), and dynactin, which promotes fast axonal transport of synaptic vesicles, mitochondria, endosomes, and lysosomes. We show that dynactin associates with cargo through AnkB interactions with both the dynactin subunit p62 and phosphatidylinositol 3-phosphate (PtdIns(3)P) lipids generated by PIK3C3. AnkB knockout resulted in shortened axon tracts and marked reduction in membrane association of dynactin and dynein, whereas it did not affect the organization of spectrin–actin axonal rings imaged by 3D-STORM. Loss of AnkB or of its linkages to either p62 or PtdIns(3)P or loss of PIK3C3 all impaired organelle transport and particularly retrograde transport in hippocampal neurons. Our results establish new functional relationships between PIK3C3, dynactin, and AnkB that together promote axonal transport of organelles and are required for normal axon length.