Person:
Haywood, Raphaelle

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Haywood

First Name

Raphaelle

Name

Haywood, Raphaelle

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-Transiting Planet in the Kepler-20 System
    (American Astronomical Society, 2016) Buchhave, Lars A.; Dressing, Courtney D.; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S.; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S.; Charbonneau, David; Cameron, Andrew Collier; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaelle; Johnson, John; Latham, David; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris
    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ~1.6 ${R}_{\oplus }$ has recently been proposed by several articles in the literature. Kepler-20b (${R}_{p}$ ~ 1.9 ${R}_{\oplus }$) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (${M}_{\star }$ = $0.948\pm 0.051$ ${M}_{\odot }$ and ${R}_{\star }$ = $0.964\pm 0.018$ ${R}_{\odot }$). Kepler-20b is a ${1.868}_{-0.034}^{+0.066}$ ${R}_{\oplus }$ planet in a 3.7 day period with a mass of ${9.70}_{-1.44}^{+1.41}$ ${M}_{\oplus }$, resulting in a mean density of ${8.2}_{-1.3}^{+1.5}$ ${\rm{g}}\,{\mathrm{cm}}^{-3}$, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of ${19.96}_{-3.61}^{+3.08}$ ${M}_{\oplus }$ and an orbital period of ~34 days in the gap between Kepler-20f (P ~ 11 days) and Kepler-20d (P ~ 78 days).
  • Thumbnail Image
    Publication
    An Earth-sized planet with an Earth-like density
    (Springer Nature, 2013) Pepe, Francesco; Cameron, Andrew Collier; Latham, David; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S.; Buchhave, Lars A.; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney Danielle; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaelle; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A.
    Recent analyses1–4 of data from the NASA Kepler spacecraft5 have established that planets with radii within 25 per cent of Earth’s (R⊕) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars1. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined6,7 are Kepler-10b (1.42R⊕) and Kepler-36b (1.49R⊕), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered8 and found to have a radius of only 1.16R⊕. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm−3, which is similar to that of the Earth and implies a composition of iron and rock.
  • Thumbnail Image
    Publication
    The HARPS-N Rocky Planet Search
    (EDP Sciences, 2015) Motalebi, F.; Udry, S.; Gillon, M.; Lovis, C.; Ségransan, D.; Buchhave, L. A.; Demory, B. O.; Malavolta, L.; Dressing, Courtney Danielle; Sasselov, Dimitar; Rice, K.; Charbonneau, David; Collier Cameron, A.; Latham, David; Molinari, E.; Pepe, F.; Affer, L.; Bonomo, A. S.; Cosentino, R.; Dumusque, X.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Haywood, Raphaelle; Johnson, John; Lopez, E.; Lopez-Morales, Maria; Mayor, M.; Micela, G.; Mortier, A.; Nascimbeni, V.; Philips, D.; Piotto, G.; Pollacco, D.; Queloz, D.; Sozzetti, A.; Vanderburg, A.; Watson, C. A.
    We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasicircular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms−1 ) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm−3 , suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU.
  • Thumbnail Image
    Publication
    The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet.
    (IOP Publishing, 2014) Dumusque, Xavier; Bonomo, Aldo S.; Haywood, Raphaelle; Malavolta, Luca; Ségransan, Damien; Buchhave, Lars A.; Cameron, Andrew Collier; Latham, David; Molinari, Emilio; Pepe, Francesco; Udry, Stéphane; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney Danielle; Figueira, Pedro; Fiorenzano, Aldo F. M.; Gettel, Sara; Harutyunyan, Avet; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris
    Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M ⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M ⊕ and an updated radius of $1.47^{+0.03}_{-0.02}$ R ⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm–3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M ⊕ and radius of $2.35^{+0.09}_{-0.04}$ R ⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm–3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.
  • Thumbnail Image
    Publication
    The Mass of Kepler-93b and the Composition of Terrestrial Planets
    (IOP Publishing, 2015) Dressing, Courtney Danielle; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaelle; Johnson, John; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris
    Kepler-93b is a 1.478 ± 0.019 R⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M and a radius of 0.919 ± 0.011 R. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02±0.68 M⊕. The corresponding high density of 6.88±1.18 g cm−3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 M⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1–6 M⊕ planets.
  • Thumbnail Image
    Publication
    An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus
    (2016) Phillips, David; Glenday, Alexander; Dumusque, Xavier; Buchschacher, Nicolas; Cameron, Andrew Collier; Cecconi, Massimo; Charbonneau, David; Cosentino, Rosario; Ghedina, Adriano; Haywood, Raphaelle; Latham, David; Li, Chih-Hao; Lodi, Marcello; Lovis, Christophe; Molinari, Emilio; Pepe, Francesco; Sasselov, Dimitar; Szentgyorgyi, Andrew; Udry, Stephane; Walsworth, Ronald
    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a green astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface with the goal of detecting the solar RV signal from Venus, thereby demonstrating the sensitivity of these instruments to detect true Earth-twin exoplanets.