Person: Haynes, Robin
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Haynes
First Name
Robin
Name
Haynes, Robin
3 results
Search Results
Now showing 1 - 3 of 3
Publication Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability(Springer Berlin Heidelberg, 2014) Kinney, Hannah; Cryan, Jane B.; Haynes, Robin; Paterson, David S.; Haas, Elisabeth A.; Mena, Othon J.; Minter, Megan; Journey, Kelley W.; Trachtenberg, Felicia L.; Goldstein, Richard; Armstrong, Dawna D.Sudden unexplained death in infants, including the sudden infant death syndrome, is likely due to heterogeneous causes that involve different intrinsic vulnerabilities and/or environmental factors. Neuropathologic research focuses upon the role of brain regions, particularly the brainstem, that regulate or modulate autonomic and respiratory control during sleep or transitions to waking. The hippocampus is a key component of the forebrain–limbic network that modulates autonomic/respiratory control via brainstem connections, but its role in sudden infant death has received little attention. We tested the hypothesis that a well-established marker of hippocampal pathology in temporal lobe epilepsy—focal granule cell bilamination in the dentate, a variant of granule cell dispersion—is associated with sudden unexplained death in infants. In a blinded study of hippocampal morphology in 153 infants with sudden and unexpected death autopsied in the San Diego County medical examiner’s office, deaths were classified as unexplained or explained based upon autopsy and scene investigation. Focal granule cell bilamination was present in 41.2 % (47/114) of the unexplained group compared to 7.7 % (3/39) of the explained (control) group (p < 0.001). It was associated with a cluster of other dentate developmental abnormalities that reflect defective neuronal proliferation, migration, and/or survival. Dentate lesions in a large subset of infants with sudden unexplained death may represent a developmental vulnerability that leads to autonomic/respiratory instability or autonomic seizures, and sleep-related death when the infants are challenged with homeostatic stressors. Importantly, these lesions can be recognized in microscopic sections prepared in current forensic practice. Future research is needed to determine the relationship between hippocampal and previously reported brainstem pathology in sudden infant death. Electronic supplementary material The online version of this article (doi:10.1007/s00401-014-1357-0) contains supplementary material, which is available to authorized users.Publication Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study(Oxford University Press, 2016) Haynes, Robin; Folkerth, Rebecca D.; Paterson, David S.; Broadbelt, Kevin G.; Dan Zaharie, S.; Hewlett, Richard H.; Dempers, Johan J.; Burger, Elsie; Wadee, Shabbir; Schubert, Pawel; Wright, Colleen; Sens, Mary Ann; Nelsen, Laura; Randall, Bradley B.; Tran, Hoa; Geldenhuys, Elaine; Elliott, Amy J.; Odendaal, Hein J.; Kinney, HannahThe Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study.Publication Mechanisms of Perinatal Brain Injury(Hindawi Publishing Corporation, 2012) Haynes, Robin; DeSilva, Tara M.; Li, Jianrong