Person: Nocera, Daniel
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Nocera
First Name
Daniel
Name
Nocera, Daniel
42 results
Search Results
Now showing 1 - 10 of 42
Publication Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations(American Chemical Society, 2014) Powers, David C.; Anderson, Bryce L.; Hwang, Seung Jun; Powers, Tamara M.; Pérez, Lisa M.; Hall, Michael B.; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, DanielPolynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal–metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal–metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.Publication Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase(American Chemical Society, 2014) Olshansky, Lisa; Pizano, Arturo A.; Wei, Yifeng; Stubbe, JoAnne; Nocera, DanielRibonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis.Publication Structurally characterized terminal manganese(iv) oxo tris(alkoxide) complex† †Electronic supplementary information (ESI) available: Single crystal X-ray diffraction data; ESI-MS spectra and data: IR spectra; and magnetic data. CCDC 1829119–1829121. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc01164h(Royal Society of Chemistry, 2018) Halbach, Robert L.; Gygi, David; Bloch, Eric D.; Anderson, Bryce L.; Nocera, DanielA Mn(iv) complex featuring a terminal oxo ligand, [MnIV(O)(ditox)3][K(15-C-5)2] (3; ditox = tBu2MeCO–, 15-C-5 = 15-crown-5-ether) has been isolated and structurally characterized. Treatment of the colorless precursor [MnII(ditox)3][K(15-C-5)2] (2) with iodosobenzene affords 3 as a green free-flowing powder in high yields. The X-ray crystal structure of 3 reveals a pseudotetrahedral geometry about the central Mn, which features a terminal oxo (d(Mn–Oterm = 1.628(2) Å)). EPR spectroscopy, SQUID magnetometry, and Evans method magnetic susceptibility indicate that 3 consists of a high-spin S = 3/2 Mn(iv) metal center. 3 promotes C–H bond activation by a hydrogen atom abstraction. The [MnIV(O)(ditox)3]– furnishes a model for the proposed terminal oxo of the unique manganese of the oxygen evolving complex of photosystem II.Publication Facet-Selective Growth on Nanowires Yields Multi-Component Nanostructures and Photonic Devices(American Chemical Society, 2013) Kempa, Thomas Jan; Kim, Sun-Kyung; Day, Robert; Park, Hong-Gyu; Nocera, Daniel; Lieber, CharlesEnhanced synthetic control of the morphology, crystal structure, and composition of nanostructures can drive advances in nanoscale devices. Axial and radial semiconductor nanowires are examples of nanostructures with one and two structural degrees of freedom, respectively, and their synthetically tuned and modulated properties have led to advances in nanotransistor, nanophotonic, and thermoelectric devices. Similarly, developing methods that allow for synthetic control of greater than two degrees of freedom could enable new opportunities for functional nanostructures. Here we demonstrate the first regioselective nanowire shell synthesis in studies of Ge and Si growth on faceted Si nanowire surfaces. The selectively deposited Ge is crystalline, and its facet position can be synthetically controlled in situ. We use this synthesis to prepare electrically addressable nanocavities into which solution soluble species such as Au nanoparticles can be incorporated. The method furnishes multicomponent nanostructures with unique photonic properties and presents a more sophisticated nanodevice platform for future applications in catalysis and photodetection.Publication Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes(Nature Pub. Group, 2015) Bachman, John C.; Kavian, Reza; Graham, Daniel J.; Kim, Dong Young; Noda, Suguru; Nocera, Daniel; Shao-Horn, Yang; Lee, Seung WooElectrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ∼350 Wh kg−1electrode at power densities of ∼10 kW kg−1electrode for over 10,000 cycles.Publication Multi-electron reactivity of a cofacial di-tin(ii) cryptand: partial reduction of sulfur and selenium and reversible generation of S3˙– † †Electronic supplementary information (ESI) available: Experimental procedures and crystallographic details. CCDC 1469593, 1469595 and 1469596. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc01754a Click here for additional data file. Click here for additional data file.(Royal Society of Chemistry, 2016) Stauber, Julia M.; Müller, Peter; Dai, Yizhe; Wu, Gang; Nocera, Daniel; Cummins, Christopher C.Cofacial bimetallic tin(ii) ([Sn2(mBDCA-5t)]2–, 1) and lead(ii) ([Pb2(mBDCA-5t)]2–, 2) complexes have been prepared by hexadeprotonation of hexacarboxamide cryptand mBDCA-5t-H6 together with double Sn(ii) or Pb(ii) insertion. Reaction of 1 with elemental sulfur or selenium generates di-tin polychalcogenide complexes containing μ-E and bridging μ-E5 ligands where E = S or Se, and the Sn(ii) centers have both been oxidized to Sn(iv). Solution and solid-state UV-Vis spectra of [(μ-S5)Sn2(μ-S)(mBDCA-5t)]2– (4) indicate that the complex acts reversibly as a source of S3˙– in DMF solution with a K eq = 0.012 ± 0.002. Reductive removal of all six chalcogen atoms is achieved through treatment of [(μ-E5)Sn2(μ-E)(mBDCA-5t)]2– with PR3 (R = tBu, Ph, OiPr) to produce six equiv. of the corresponding EPR3 compound with regeneration of di-tin(ii) cryptand complex 1.Publication Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase(American Chemical Society, 2014) Olshansky, Lisa; Pizano, Arturo A.; Wei, Yifeng; Stubbe, JoAnne; Nocera, DanielRibonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis.Publication Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid† †Electronic supplementary information (ESI) available: CVs for unary metal oxides deposition, electrochemical stability at higher current densities for unary metal oxides at pH 2.5, EDS maps for CoMnOx and CoPbOx, STEM images and PXRD of CoMnOx and CoFePbOx, high-resolution XPS of Fe 2p for CoFePbOx, Pourbaix diagrams (of Mn, Co, Pb, and Fe), and elemental analysis. See DOI: 10.1039/c7sc01239j Click here for additional data file.(Royal Society of Chemistry, 2017) Huynh, Michael; Ozel, Tuncay; Liu, Chong; Lau, Eric C.; Nocera, DanielOxygen evolution reaction (OER) catalysts that are earth-abundant and are active and stable in acid are unknown. Active catalysts derived from Co and Ni oxides dissolve at low pH, whereas acid stable systems such as Mn oxides (MnOx) display poor OER activity. We now demonstrate a rational approach for the design of earth-abundant catalysts that are stable and active in acid by treating activity and stability as decoupled elements of mixed metal oxides. Manganese serves as a stabilizing structural element for catalytically active Co centers in CoMnOx films. In acidic solutions (pH 2.5), CoMnOx exhibits the OER activity of electrodeposited Co oxide (CoOx) with a Tafel slope of 70–80 mV per decade while also retaining the long-term acid stability of MnOx films for OER at 0.1 mA cm–2. Driving OER at greater current densities in this system is not viable because at high anodic potentials, Mn oxides convert to and dissolve as permanganate. However, by exploiting the decoupled design of the catalyst, the stabilizing structural element may be optimized independently of the Co active sites. By screening potential–pH diagrams, we replaced Mn with Pb to prepare CoFePbOx films that maintained the high OER activity of CoOx at pH 2.5 while exhibiting long-term acid stability at higher current densities (at 1 mA cm–2 for over 50 h at pH 2.0). Under these acidic conditions, CoFePbOx exhibits OER activity that approaches noble metal oxides, thus establishing the viability of decoupling functionality in mixed metal catalysts for designing active, acid-stable, and earth-abundant OER catalysts.Publication A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes(American Chemical Society, 2016) Ravichandran, Kanchana R.; Taguchi, Alexander T.; Wei, Yifeng; Tommos, Cecilia; Nocera, Daniel; Stubbe, JoAnneEscherichia coli class Ia ribonucleotide reductase (RNR) converts ribonucleotides to deoxynucleotides. A diferric-tyrosyl radical (Y122•) in one subunit (β2) generates a transient thiyl radical in another subunit (α2) via long-range radical transport (RT) through aromatic amino acid residues (Y122 ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2). Equilibration of Y356•, Y731•, and Y730• was recently observed using site specifically incorporated unnatural tyrosine analogs; however, equilibration between Y122• and Y356• has not been detected. Our recent report of Y356• formation in a kinetically and chemically competent fashion in the reaction of β2 containing 2,3,5-trifluorotyrosine at Y122 (F3Y122•-β2) with α2, CDP (substrate), and ATP (effector) has now afforded the opportunity to investigate equilibration of F3Y122• and Y356•. Incubation of F3Y122•-β2, Y731F-α2 (or Y730F-α2), CDP, and ATP at different temperatures (2–37 °C) provides ΔE°′(F3Y122•–Y356•) of 20 ± 10 mV at 25 °C. The pH dependence of the F3Y122• ⇆ Y356• interconversion (pH 6.8–8.0) reveals that the proton from Y356 is in rapid exchange with solvent, in contrast to the proton from Y122. Insertion of 3,5-difluorotyrosine (F2Y) at Y356 and rapid freeze-quench EPR analysis of its reaction with Y731F-α2, CDP, and ATP at pH 8.2 and 25 °C shows F2Y356• generation by the native Y122•. FnY-RNRs (n = 2 and 3) together provide a model for the thermodynamic landscape of the RT pathway in which the reaction between Y122 and C439 is ∼200 meV uphill.Publication Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes(American Chemical Society, 2014) Ullman, Andrew M.; Liu, Yi; Huynh, Michael; Bediako, D. Kwabena; Wang, Hongsen; Anderson, Bryce L.; Powers, David C.; Breen, John J.; Abruña, Héctor D.; Nocera, DanielThe observed water oxidation activity of the compound class Co4O4(OAc)4(Py–X)4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co4O4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials and demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.