Person: Zhang, Rongjing
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Zhang
First Name
Rongjing
Name
Zhang, Rongjing
2 results
Search Results
Now showing 1 - 2 of 2
Publication The Upper Surface of an Escherichia Coli Swarm Is Stationary(National Academy of Sciences, 2010) Zhang, Rongjing; Turner, Linda; Berg, HowardWhen grown in a rich medium on agar, many bacteria elongate, produce more flagella, and swim in a thin film of fluid over the agar surface in swirling packs. Cells that spread in this way are said to swarm. The agar is a solid gel, with pores smaller than the bacteria, so the swarm/agar interface is fixed. Here we show, in experiments with Escherichia coli, that the swarm/air interface also is fixed. We deposited MgO smoke particles on the top surface of an E. coli swarm near its advancing edge, where cells move in a single layer, and then followed the motion of the particles by dark-field microscopy and the motion of the underlying cells by phase-contrast microscopy. Remarkably, the smoke particles remained fixed (diffusing only a few micrometers) while the swarming cells streamed past underneath. The diffusion coefficients of the smoke particles were smaller over the virgin agar ahead of the swarm than over the swarm itself. Changes between these two modes of behavior were evident within 10–20 μm of the swarm edge, indicating an increase in depth of the fluid in advance of the swarm. The only plausible way that the swarm/air interface can be fixed is that it is covered by a surfactant monolayer pinned at its edges. When a swarm is exposed to air, such a monolayer can markedly reduce water loss. When cells invade tissue, the ability to move rapidly between closely opposed fixed surfaces is a useful trait.Publication Visualization of Flagella during Bacterial Swarming(American Society for Microbiology, 2010) Turner, Linda; Zhang, Rongjing; Darnton, Nicholas C.; Berg, HowardWhen cells of Escherichia coli are grown in broth and suspended at low density in a motility medium, they swim independently, exploring a homogeneous, isotropic environment. Cell trajectories and the way in which these trajectories are determined by flagellar dynamics are well understood. When cells are grown in a rich medium on agar instead, they elongate, produce more flagella, and swarm. They move in coordinated packs within a thin film of fluid, in intimate contact with one another and with two fixed surfaces, a surfactant monolayer above and an agar matrix below: they move in an inhomogeneous, anisotropic environment. Here we examine swarm-cell trajectories and ways in which these trajectories are determined by flagellar motion, visualizing the cell bodies by phase-contrast microscopy and the flagellar filaments by fluorescence microscopy. We distinguish four kinds of tracks, defining stalls, reversals, lateral movement, and forward movement. When cells are stalled at the edge of a colony, they extend their flagellar filaments outwards, moving fluid over the virgin agar; when cells reverse, changes in filament chirality play a crucial role; when cells move laterally, they are pushed sideways by adjacent cells; and when cells move forward, they are pushed by flagellar bundles in the same way as when they are swimming in bulk aqueous media. These maneuvers are described in this report.