Person: Faas, Daniela
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Faas
First Name
Daniela
Name
Faas, Daniela
4 results
Search Results
Now showing 1 - 4 of 4
Publication Quickly Building Students’ Confidence in their Fabrication Abilities(2013) Faas, Daniela; Frey, Daniel D.Undergraduate mechanical engineering education usually places a high priority on design experience. Such courses serve to enhance student interest in engineering, improve retention, and improve results in later courses. A challenge to implementing early design experiences in engineering programs is the readiness of the student population for hands-on design work. One of the main obstacles the students face is the lack of fabrication experience. This typically leads students to begin work too late. This has been referred to as “time scallop”- as deadlines are approached, effort levels rise rapidly and fall back to low levels repeatedly. A problem motivating this paper is that students seemed hesitant to use machine tools despite previous introductory training including mills, lathes, saws, sheet metal cutting and bending. In this course, each student is expected to conceive, design, build, and operate a robot to carry out a specified set of tasks. This paper describes an activity that allows students to quickly build and test a robot within a 3-hour time frame. This robot, called “Mini-Me” serves most students as a starting point to build a more complex machine later on. Surveys indicate the activity builds students’ confidence in their fabrication skills and that the gains are largest for female students. This work shows the benefit of giving students smaller subtasks to reduce anxiety about not having adequate skills to design and build a robot. This activity has enabled students to extract key concepts and the students felt more confident that they could complete a more complex robot. Overall, student’s self-reported knowledge of servos, motors and using manufacturing equipment increased based on survey results. The activity described in this paper has had a large impact on overall manufacturing confidence and course outcome for students.Publication Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle(Springer Science + Business Media, 2012) Buffinton, Christine M.; Faas, Daniela; Sedmera, DavidAltered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50-82 % higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147 Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4 %; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.Publication The influence of immersion and presence in early stage engineering designing and building(Cambridge University Press (CUP), 2014) Faas, Daniela; Bao, Qifang; Frey, Daniel D.; Yang, Maria C.This paper explores the role of a designer's sense of engagement in early stage design. In the field of virtual reality, presence and immersion are standard measures of an individual's sense of engagement and involvement in an activity. High levels of presence might indicate that the designer is highly focused on the work. The central research question is the following: do designers who are more engaged in design activity, as measured by presence and immersive tendency questionnaires, produce better designs? An experiment was conducted to assess presence and immersive tendencies within the context of a hands-on, open-ended design-and-build activity. The results indicated that the designers' sense of immersion and presence ranged widely as well as their sense of frustration and calmness while performing the design activity. It was found that higher levels of presence correlated with either high design performance or low design performance. Lower levels of presence correlated with average design performance. No correlations were found between immersive tendency and design performance. This study suggests that some level of presence can be linked with better design, and it implies that level of presence might serve as an indicator of performance and learning in similar design-and-build activities.Publication Self-Directed Summer Design Experience Across Disciplines and the Globe(ASEE, 2017-03-15) Lombardo, Christopher; Faas, Daniela; Uttamchandani, Avinash; Hu, EvelynDuring the summer of 2014, the Harvard School of Engineering and Applied Sciences and the Hong Kong University of Science and Technology initiated a multidisciplinary international design experience for the benefit of the student populations of both institutions. The goal of this program was to create an international multidisciplinary team-based research and design project that included exposure to the academic and industrial environments in both Hong Kong as well as the United States (specifically the Boston area). The Harvard-HKUST International Summer Design Experience occurred completely outside of any classroom setting during nine weeks and was co-located in Boston and Hong Kong for four weeks each. The reason to hold this program in both Hong Kong and Cambridge, MA was to give the students a chance to work within and experience both campuses, culturally and geographically. The pedagogical approach was unique, as there was no embedded curriculum and students were able to freely pursue a project in a given topic area that they were interested in. The major topic for this summer was Visible Light Communication systems. In this paper we present the general pedagogical approach to this experience and provide some insights and examples of the effect the program had on students.