Person: Gray, Nathanael
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gray
First Name
Nathanael
Name
Gray, Nathanael
47 results
Search Results
Now showing 1 - 10 of 47
Publication BORIS Promotes Chromatin Regulatory Interactions in Treatment-Resistant Cancer Cells(Springer Science and Business Media LLC, 2019-08) Dries, Ruben; Seruggia, Davide; Gao, Yang; Sharma, Bandana; Huang, Hao; Moreau, Lisa; McLane, Michael; Marco, Eugenio; Chen, Ting; Yuan, Guo-Cheng; Young, Richard A.; Debruyne, David; Day, Daniel; Gray, Nathanael; Wong, Kwok-Kin; Orkin, Stuart; George, Rani; Sengupta, SatyakiThe CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, plays a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements. In cancer cells the disruption of CTCF binding at specific loci through somatic mutation or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ cell-specific paralog of CTCF, BORIS (Brother of the Regulator of Imprinted Sites), is overexpressed in multiple cancers, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes novel chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma cells rendered resistant to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of new super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS – to engender regulatory chromatin interactions that support specific cancer phenotypes.Publication Small-Molecule Targeting of Brachyury Transcription Factor Addiction in Chordoma(Springer Science and Business Media LLC, 2019-01-21) Sharifnia, Tanaz; Wawer, Mathias J.; Chen, Ting; Huang, Qing-Yuan; Weir, Barbara A.; Sizemore, Ann; Lawlor, Matthew A.; Goodale, Amy; Cowley, Glenn S.; Vazquez, Francisca; Ott, Christopher; Francis, Joshua M.; Sassi, Slim; Cogswell, Patricia; Sheppard, Hadley E.; Zhang, Tinghu; Gray, Nathanael; Clarke, Paul A.; Blagg, Julian; Workman, Paul; Sommer, Josh; Hornicek, Francis; Root, David E.; Hahn, William; Bradner, James E.; Wong, Kwok-Kin; Clemons, Paul A.; Lin, Charles Y.; Kotz, Joanne D.; Schreiber, StuartChordoma is a primary bone cancer with no approved therapy. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors. In chordoma, we find that T is associated with a 1.5-Mb region containing ‘super-enhancers’ and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.Publication Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members(Portland Press Ltd., 2015) Malik, Nazma; Vollmer, Stefan; Nanda, Sambit Kumar; Lopez-Pelaez, Marta; Prescott, Alan; Gray, Nathanael; Cohen, PhilipPLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNβ, interferon β) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser396, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNβ induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members.Publication THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors(Nature Publishing Group, 2017) Cayrol, Florencia; Praditsuktavorn, Pannee; Fernando, Tharu M.; Kwiatkowski, Nicholas; Marullo, Rosella; Calvo-Vidal, M. Nieves; Phillip, Jude; Pera, Benet; Yang, Shao Ning; Takpradit, Kaipol; Roman, Lidia; Gaudiano, Marcello; Crescenzo, Ramona; Ruan, Jia; Inghirami, Giorgio; Zhang, Tinghu; Cremaschi, Graciela; Gray, Nathanael; Cerchietti, LeandroPeripheral T-cell lymphomas (PTCL) are aggressive diseases with poor response to chemotherapy and dismal survival. Identification of effective strategies to target PTCL biology represents an urgent need. Here we report that PTCL are sensitive to transcription-targeting drugs, and, in particular, to THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7). The STAT-signalling pathway is highly vulnerable to THZ1 even in PTCL cells that carry the activating STAT3 mutation Y640F. In mutant cells, CDK7 inhibition decreases STAT3 chromatin binding and expression of highly transcribed target genes like MYC, PIM1, MCL1, CD30, IL2RA, CDC25A and IL4R. In surviving cells, THZ1 decreases the expression of STAT-regulated anti-apoptotic BH3 family members MCL1 and BCL-XL sensitizing PTCL cells to BH3 mimetic drugs. Accordingly, the combination of THZ1 and the BH3 mimetic obatoclax improves lymphoma growth control in a primary PTCL ex vivo culture and in two STAT3-mutant PTCL xenografts, delineating a potential targeted agent-based therapeutic option for these patients.Publication Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation(Impact Journals LLC, 2016) Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael; Weisberg, Ellen; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, QingsongIbrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.Publication Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase(Public Library of Science, 2015) Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael; Carlomagno, Francesca; Santoro, MassimoOncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.Publication MELK is not necessary for the proliferation of basal-like breast cancer cells(eLife Sciences Publications, Ltd, 2017) Huang, Hai-Tsang; Seo, Hyuk-Soo; Zhang, Tinghu; Wang, Yubao; Jiang, Baishan; Li, Qing; Buckley, Dennis L; Nabet, Behnam; Roberts, Justin M; Paulk, Joshiawa; Dastjerdi, Shiva; Winter, Georg E; McLauchlan, Hilary; Moran, Jennifer; Bradner, James E; Eck, Michael; Dhe-Paganon, Sirano; Zhao, Jean; Gray, NathanaelThorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical tools developed here allow for the identification and validation of any causal roles MELK may play in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore, our study provides a general framework for preclinical target validation.Publication ERK5 is activated by oncogenic BRAF and promotes melanoma growth(Nature Publishing Group UK, 2018) Tusa, Ignazia; Gagliardi, Sinforosa; Tubita, Alessandro; Pandolfi, Silvia; Urso, Carmelo; Borgognoni, Lorenzo; Wang, Jinhua; Deng, Xianming; Gray, Nathanael; Stecca, Barbara; Rovida, ElisabettaMalignant melanoma is among the most aggressive cancers and its incidence is increasing worldwide. Targeted therapies and immunotherapy have improved the survival of patients with metastatic melanoma in the last few years; however, available treatments are still unsatisfactory. While the role of the BRAF-MEK1/2-ERK1/2 pathway in melanoma is well established, the involvement of mitogen-activated protein kinases MEK5-ERK5 remains poorly explored. Here we investigated the function of ERK5 signaling in melanoma. We show that ERK5 is consistently expressed in human melanoma tissues and is active in melanoma cells. Genetic silencing and pharmacological inhibition of ERK5 pathway drastically reduce the growth of melanoma cells and xenografts harboring wild-type (wt) or mutated BRAF (V600E). We also found that oncogenic BRAF positively regulates expression, phosphorylation, and nuclear localization of ERK5. Importantly, ERK5 kinase and transcriptional transactivator activities are enhanced by BRAF. Nevertheless, combined pharmacological inhibition of BRAFV600E and MEK5 is required to decrease nuclear ERK5, that is critical for the regulation of cell proliferation. Accordingly, combination of MEK5 or ERK5 inhibitors with BRAFV600E inhibitor vemurafenib is more effective than single treatments in reducing colony formation and growth of BRAFV600E melanoma cells and xenografts. Overall, these data support a key role of the ERK5 pathway for melanoma growth in vitro and in vivo and suggest that targeting ERK5, alone or in combination with BRAF-MEK1/2 inhibitors, might represent a novel approach for melanoma treatment.Publication Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation(Nature Publishing Group UK, 2018) Zheng, Yiyan; Sethi, Ritika; Mangala, Lingegowda S.; Taylor, Charlotte; Goldsmith, Juliet; Wang, Ming; Masuda, Kenta; Karaminejadranjbar, Mohammad; Mannion, David; Miranda, Fabrizio; Herrero-Gonzalez, Sandra; Hellner, Karin; Chen, Fiona; Alsaadi, Abdulkhaliq; Albukhari, Ashwag; Fotso, Donatien Chedom; Yau, Christopher; Jiang, Dahai; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Knapp, Stefan; Gray, Nathanael; Campo, Leticia; Myers, Kevin A.; Dhar, Sunanda; Ferguson, David; Bast, Robert C.; Sood, Anil K.; von Delft, Frank; Ahmed, Ahmed AshourThough used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy.Publication Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5(American Association for the Advancement of Science, 2017) Gilbert, Andrew S.; Seoane, Paula I.; Sephton-Clark, Poppy; Bojarczuk, Aleksandra; Hotham, Richard; Giurisato, Emanuele; Sarhan, Adil R.; Hillen, Amy; Velde, Greetje Vande; Gray, Nathanael; Alessi, Dario R.; Cunningham, Debbie L.; Tournier, Cathy; Johnston, Simon A.; May, Robin C.Vomocytosis, or nonlytic extrusion, is a poorly understood process through which macrophages release live pathogens that they have failed to kill back into the extracellular environment. Vomocytosis is conserved across vertebrates and occurs with a diverse range of pathogens, but to date, the host signaling events that underpin expulsion remain entirely unknown. We use a targeted inhibitor screen to identify the MAP kinase ERK5 as a critical suppressor of vomocytosis. Pharmacological inhibition or genetic manipulation of ERK5 activity significantly raises vomocytosis rates in human macrophages, whereas stimulation of the ERK5 signaling pathway inhibits vomocytosis. Lastly, using a zebrafish model of cryptococcal disease, we show that reducing ERK5 activity in vivo stimulates vomocytosis and results in reduced dissemination of infection. ERK5 therefore represents the first host signaling regulator of vomocytosis to be identified and a potential target for the future development of vomocytosis-modulating therapies.