Person:
Gibson, William

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gibson

First Name

William

Name

Gibson, William

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability
    (eLife Sciences Publications, Ltd, 2017) Paolella, Brenton R.; Gibson, William; Urbanski, Laura M; Alberta, John; Zack, Travis Ian; Bandopadhayay, Pratiti; Nichols, Caitlin; Agarwalla, Pankaj Kumar; Brown, Meredith S; Lamothe, Rebecca; Yu, Yong; Choi, Peter; Obeng, Esther A; Heckl, Dirk; Wei, Guo; Wang, Belinda; Tsherniak, Aviad; Vazquez, Francisca; Weir, Barbara Ann; Root, David E; Cowley, Glenn S; Buhrlage, Sara; Stiles, Charles; Ebert, Benjamin; Hahn, William; Reed, Robin; Beroukhim, Rameen
    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency. DOI: http://dx.doi.org/10.7554/eLife.23268.001
  • Thumbnail Image
    Publication
    MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism
    (2016) Bandopadhayay, Pratiti; Ramkissoon, Lori A.; Jain, Payal; Bergthold, Guillaume; Wala, Jeremiah; Zeid, Rhamy; Schumacher, Steven E.; Urbanski, Laura; O’Rourke, Ryan; Gibson, William; Pelton, Kristine; Ramkissoon, Shakti H.; Han, Harry J.; Zhu, Yuankun; Choudhari, Namrata; Silva, Amanda; Boucher, Katie; Henn, Rosemary E.; Kang, Yun Jee; Knoff, David; Paolella, Brenton R.; Gladden-Young, Adrianne; Varlet, Pascale; Pages, Melanie; Horowitz, Peleg M.; Federation, Alexander; Malkin, Hayley; Tracy, Adam; Seepo, Sara; Ducar, Matthew; Hummelen, Paul Van; Santi, Mariarita; Buccoliero, Anna Maria; Scagnet, Mirko; Bowers, Daniel C.; Giannini, Caterina; Puget, Stephanie; Hawkins, Cynthia; Tabori, Uri; Klekner, Almos; Bognar, Laszlo; Burger, Peter C.; Eberhart, Charles; Rodriguez, Fausto J.; Hill, D. Ashley; Mueller, Sabine; Haas-Kogan, Daphne; Phillips, Joanna J.; Santagata, Sandro; Stiles, Charles D.; Bradner, James E; Jabado, Nada; Goren, Alon; Grill, Jacques; Ligon, Azra; Goumnerova, Liliana; Waanders, Angela J.; Storm, Phillip B.; Kieran, Mark W.; Ligon, Keith; Beroukhim, Rameen; Resnick, Adam C.
    Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs including 19 Angiocentric Gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in Angiocentric Gliomas. In vitro and in vivo functional studies show MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression, and hemizygous loss of the tumor suppressor QKI. This represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.
  • Thumbnail Image
    Publication
    Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth
    (Nature Publishing Group, 2016) Holst, Frederik; Hoivik, Erling A.; Gibson, William; Taylor-Weiner, Amaro; Schumacher, Steven E.; Asmann, Yan W.; Grossmann, Patrick; Trovik, Jone; Necela, Brian M.; Thompson, E. Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B.; Cherniack, Andrew D.
    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications.
  • Thumbnail Image
    Publication
    The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis
    (2016) Gibson, William; Hoivik, Erling A.; Halle, Mari K.; Taylor-Weiner, Amaro; Cherniack, Andrew D.; Berg, Anna; Holst, Frederik; Zack, Travis Ian; Werner, Henrica M. J.; Staby, Kjersti M.; Rosenberg, Mara; Stefansson, Ingunn M.; Kusonmano, Kanthida; Chevalier, Aaron; Mauland, Karen K.; Trovik, Jone; Krakstad, Camilla; Giannakis, Marios; Hodis, Eran; Woie, Kathrine; Bjorge, Line; Vintermyr, Olav K.; Wala, Jeremiah; Lawrence, Michael; Getz, Gad; Carter, Scott; Beroukhim, Rameen; Salvesen, Helga B.
    Recent studies have detailed the genomic landscape of primary endometrial cancers, but their evolution into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors, and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed TCGA-data, identifying novel recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor NRIP1 in 12% of patients. We found that likely driver events tended to be shared by primary and metastatic tissue-samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity within endometrial cancers and relative homogeneity across metastatic sites.
  • Thumbnail Image
    Publication
    Molecular profiling of endometrial carcinoma precursor, primary and metastatic lesions suggests different targets for treatment in obese compared to non-obese patients
    (Impact Journals LLC, 2015) Berg, Anna; Hoivik, Erling A.; Mjøs, Siv; Holst, Frederik; Werner, Henrica M. J.; Tangen, Ingvild L.; Taylor-Weiner, Amaro; Gibson, William; Kusonmano, Kanthida; Wik, Elisabeth; Trovik, Jone; Halle, Mari K.; Øyan, Anne M.; Kalland, Karl-Henning; Cherniack, Andrew D.; Beroukhim, Rameen; Stefansson, Ingunn; Mills, Gordon B.; Krakstad, Camilla; Salvesen, Helga B.
    Obesity is linked to increased incidence of endometrioid endometrial cancer (EEC) and complex atypical hyperplasia (CAH). We here explore pattern and sequence of molecular alterations characterizing endometrial carcinogenesis in general and related to body mass index (BMI), to improve diagnostic stratification and treatment strategies. We performed molecular characterization of 729 prospectively collected EEC and CAH. Candidate biomarkers were identified in frozen samples by whole-exome and Sanger sequencing, oligonucleotide gene expression and Reverse Phase Protein Arrays (investigation cohort) and further explored in formalin fixed tissues by immunohistochemistry and Fluorescent in Situ Hybridization (validation cohort). We here demonstrate that PIK3CA mutations, PTEN loss, PI3K and KRAS activation are early events in endometrial carcinogenesis. Molecular changes related to KRAS activation and inflammation are more common in obese CAH patients, suggesting different prevention and systemic treatment strategies in obese and non-obese patients. We also found that oncoprotein Stathmin might improve preoperative diagnostic distinction between premalignant and malignant endometrial lesions.
  • Thumbnail Image
    Publication
    SWELL1 is a regulator of adipocyte size, insulin signaling and glucose homeostasis
    (2017) Zhang, Yanhui; Xie, Litao; Gunasekar, Susheel K.; Tong, Dan; Mishra, Anil; Gibson, William; Wang, Chuansong; Fidler, Trevor; Marthaler, Brodie; Klingelhutz, Aloysius; Abel, E. Dale; Samuel, Isaac; Smith, Jessica K.; Cao, Lei; Sah, Rajan
    SUMMARY Adipocytes undergo considerable volumetric expansion in the setting of obesity. It has been proposed that such marked increases in adipocyte size may be sensed via adipocyte-autonomous mechanisms to mediate size-dependent intracellular signaling. Here, we show that SWELL1 (LRRC8a), a member of the Leucine Rich Repeat Containing protein family, is an essential component of a volume-sensitive ion channel (VRAC) in adipocytes. We find that SWELL1-mediated VRAC is augmented in hypertrophic murine and human adipocytes in the setting of obesity. SWELL1 regulates adipocyte insulin-PI3K-AKT2-GLUT4 signaling, glucose uptake and lipid content via SWELL1 C-terminal leucine-rich repeat domain interactions with GRB2/Cav1. Silencing GRB2 in SWELL1 KO adipocytes rescues insulin-pAKT2 signaling. In vivo, shRNA-mediated SWELL1 knock-down and adipose-targeted SWELL1 knock-out reduce adiposity and adipocyte size in obese mice while impairing systemic glycaemia and insulin-sensitivity. These studies identify SWELL1 as a cell-autonomous sensor of adipocyte size that regulates adipocyte growth, insulin sensitivity and glucose tolerance.