Person: Humphreys, Benjamin D.
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Humphreys
First Name
Benjamin D.
Name
Humphreys, Benjamin D.
4 results
Search Results
Now showing 1 - 4 of 4
Publication Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo(2014) Grgic, Ivica; Hofmeister, Andreas F.; Genovese, Giulio; Bernhardy, Andrea J.; Sun, Hua; Maarouf, Omar H.; Bijol, Vanesa; Pollak, Martin; Humphreys, Benjamin D.Identifying new biomarkers and therapeutic targets for podocytopathies such as focal segmental glomerulosclerosis (FSGS) requires a detailed analysis of transcriptional changes in podocytes over the course of disease. Here we used translating ribosome affinity purification (TRAP) to isolate and profile podocyte-specific mRNA in two different models of FSGS. Expressed eGFP-tagged ribosomal protein L10a in podocytes under the control of the Collagen-1α1 promoter enabled podocyte-specific mRNA isolation in a one-step process over the course of disease. This TRAP protocol robustly enriched known podocyte-specific mRNAs. We crossed col1α1-L10a mice with the actn4−/− and actn4+/K256E models of FSGS and analyzed podocyte transcriptional profiles at 2, 6 and 44 weeks of age. Two upregulated podocyte genes in murine FSGS (CXCL1 and DMPK) were found to be upregulated at the protein level in biopsies from patients with FSGS, validating this approach. There was no dilution of podocyte-specific transcripts during disease. These are the first podocyte-specific RNA expression datasets during aging and in two models of FSGS. This approach identified new podocyte proteins that are upregulated in FSGS and help define novel biomarkers and therapeutic targets for human glomerular disease.Publication Genetic tracing of the epithelial lineage during mammalian kidney repair(Nature Publishing Group, 2011) Humphreys, Benjamin D.Developing new therapeutic approaches to treat acute kidney injury requires a detailed understanding of endogenous cellular repair. Genetic fate mapping defines cellular hierarchies in vivo and we used this technique to assess a possible contribution of non-epithelial stem cells to renal repair after ischemic injury. Mice with efficient labeling of renal epithelial cells, but not non-epithelial interstitial cells, were subjected to a single cycle or sequential cycles of kidney injury and repair. No dilution of the epithelial cell fate marker was observed despite robust epithelial cell proliferation. Thus, non-tubular cells do not have the ability to migrate across the basement membrane and differentiate into epithelial cells in this model. Instead, surviving tubular epithelial cells are responsible for repair of the damaged nephron. Future studies will need to distinguish between uniform dedifferentiation and proliferation of all epithelial cells after injury versus selective expansion of an intratubular epithelial stem cell.Publication Lineage-tracing methods and the kidney(Nature Publishing Group, 2013) Humphreys, Benjamin D.; DiRocco, Derek PThe kidney is a complex organ with over 30 different cell types, and understanding the lineage relationships between these cells is challenging. During nephrogenesis, a central question is how the coordinated morphogenesis, growth, and differentiation of distinct cell types leads to development of a functional organ. In mature kidney, understanding cell division and fate during injury, regeneration and aging are critical topics for understanding disease. Genetic lineage tracing offers a powerful tool to decipher cellular hierarchies in both development and disease because it allows the progeny of a single cell, or group of cells, to be tracked unambiguously. Recent advances in this field include the use of inducible recombinases, multicolor reporters, and mosaic analysis. In this review, we discuss lineage-tracing methods focusing on the mouse model system and consider the impact of these methods on our understanding of kidney biology and prospects for future application.Publication Targeted Proximal Tubule Injury Triggers Interstitial Fibrosis and Glomerulosclerosis(Nature Publishing Group, 2012) Grgic, Ivica; Campanholle, Gabriela; Bijol, Vanesa; Wang, Chang; Sabbisetti, Venkata; Ichimura, Takaharu; Humphreys, Benjamin D.; Bonventre, JosephChronic kidney disease (CKD) remains one of the leading causes of death in the developed world and acute kidney injury (AKI) is now recognized as a major risk factor in its development. Understanding the factors leading to CKD after acute injury are limited by current animal models of AKI which concurrently target various kidney cell types such as epithelial, endothelial and inflammatory cells. Here we developed a mouse model of kidney injury using the Six2-Cre-LoxP technology to selectively activate expression of the simian diphtheria toxin receptor in renal epithelia derived from the metanephric mesenchyme. By adjusting the timing and dose of diphtheria toxin a highly selective model of tubular injury was created to define the acute and chronic consequences of isolated epithelial injury. The diphtheria toxin-induced sublethal tubular epithelial injury was confined to the S1 and S2 segments of the proximal tubule rather than being widespread in the metanephric mesenchyme derived epithelial lineage. Acute injury was promptly followed by inflammatory cell infiltration and robust tubular cell proliferation leading to complete recovery after a single toxin insult. In striking contrast, three insults to renal epithelial cells at one week intervals resulted in maladaptive repair with interstitial capillary loss, fibrosis and glomerulosclerosis which was highly correlated with the degree of interstitial fibrosis. Thus, selective epithelial injury can drive the formation of interstitial fibrosis, capillary rarefaction and potentially glomerulosclerosis, substantiating a direct role for damaged tubule epithelium in the pathogenesis of CKD.