Person:
Wilson, Richard

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Wilson

First Name

Richard

Name

Wilson, Richard

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    One Solution to the Arsenic Problem: A Return to Surface (Improved Dug) Wells
    (International Centre for Diarrhoeal Disease Research, Bangladesh, 2006) Joya, Sakila Afroz; Mostofa, Golam; Yousuf, Jabed; Islam, Ariful; Elahi, Altab; Mahiuddin, Golam; Rahman, Mahmuder; Quamruzzaman, Quazi; Wilson, Richard
    Arsenic contamination in drinking-water in Bangladesh is a major catastrophe, the consequences of which exceed most other man-made disasters. The national policy encourages the use of surface water as much as possible without encountering the problems of sanitation that led to the use of groundwater in the first place. This paper describes the success of the Dhaka Community Hospital (DCH) team and the procedure in implementing sanitary, arsenic-free, dugwells. The capital cost for running water is US$ 5-6 per person. Sixty-six sanitary dugwells were installed in phases between 2000 and 2004 in Pabna district of Bangladesh where there was a great need of safe water because, in some villages, 90% of tubewells were highly contaminated with arsenic. In total, 1,549 families now have access to safe arsenic-free dugwell water. Some of them have a water-pipe up to their kitchen. All of these were implemented with active participation of community members. They also pay for water-use and are themselves responsible for the maintenance and water quality. The DCH helped the community with installation and maintenance protocol and also with monitoring water quality. The bacteria levels are low but not always zero, and studies are in progress to reduce bacteria by chlorination.
  • Thumbnail Image
    Publication
    Predicting the Carcinogenicity of Chemicals in Humans from Rodent Bioassay Data
    (The National Institute of Environmental Health Sciences (NIEHS), 1991) Goodman, Gay; Wilson, Richard
    Regulatory agencies currently rely on rodent carcinogenicity bioassay data to predict whether or not a given chemical poses a carcinogenic threat to humans. We argue that it is always more useful to know a chemical's carcinogenic potency (with confidence limits) than to be able to say only qualitatively that it has been found to be a carcinogen. In a typical bioassay, a chemical is administered to groups of 50 to 100 rodents at the highest feasible level (the maximum tolerated dose) and rarely at less than 1/10 this dose in order to maximize the statistical significance of any increase in tumors that might result. Recently, much experimental work has focused on the mechanisms by which site-specific toxicity arising from chronic administration at the maximum tolerated dose may lead to carcinogenicity. Extrapolation of high-dose results to low doses does not take into consideration the possibility of a threshold dose, below which the carcinogenic potency is much lower or even zero. Threshold dose-response phenomena may be much more relevant to the etiology of cancer in the rodent bioassays than was earlier realized; if so, there is an even greater need for establishing dose-dependent potency estimates. The emphasis of this review is on the interspecies comparison of high-dose potencies. The qualitative and quantitative comparison of carcinogenicities between mice and rats and between rodents and humans is reviewed and discussed. We conclude that there is a good qualitative (yes/no) correlation for both the rat/mouse and the rodent/human comparison. There is also a good correlation of the carcinogenic potencies between rats and mice, and the upper limits on potencies in humans are consistent with rodent potencies for those chemicals for which human exposure data are available. For the rodent/human comparison, the best estimate of the interspecies potency factor is lognormally distributed around 1 when the potencies in both species are measured in units of (mg/kg-day)-1.