Person:
Speer, Colenso M.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Speer

First Name

Colenso M.

Name

Speer, Colenso M.

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity
    (BioMed Central, 2014) Speer, Colenso M.; Sun, Chao; Liets, Lauren C; Stafford, Ben K; Chapman, Barbara; Cheng, Hwai-Jong
    Background: Spontaneous retinal activity (SRA) is important during eye-specific segregation within the dorsal lateral geniculate nucleus (dLGN), but the feature(s) of activity critical for retinogeniculate refinement are controversial. Pharmacologically or genetically manipulating cholinergic signaling during SRA perturbs correlated retinal ganglion cell (RGC) spiking and disrupts eye-specific retinofugal refinement in vivo, consistent with an instructive role for SRA during visual system development. Paradoxically, ablating the starburst amacrine cells (SACs) that generate cholinergic spontaneous activity disrupts correlated RGC firing without impacting retinal activity levels or eye-specific segregation in the dLGN. Such experiments suggest that patterned SRA during retinal waves is not critical for eye-specific refinement and instead, normal activity levels are permissive for retinogeniculate development. Here we revisit the effects of ablating the cholinergic network during eye-specific segregation and show that SAC ablation disrupts, but does not eliminate, retinal waves with no concomitant impact on normal eye-specific segregation in the dLGN. Results: We induced SAC ablation in postnatal ferret pups beginning at birth by intraocular injection of a novel immunotoxin selective for the ferret vesicular acetylcholine transporter (Ferret VAChT-Sap). Through dual-patch whole-cell and multi-electrode array recording we found that SAC ablation altered SRA patterns and led to significantly smaller retinal waves compared with controls. Despite these defects, eye-specific segregation was normal. Further, interocular competition for target territory in the dLGN proceeded in cases where SAC ablation was asymmetric in the two eyes. Conclusions: Our data demonstrate normal eye-specific retinogeniculate development despite significant abnormalities in patterned SRA. Comparing our current results with earlier studies suggests that defects in retinal wave size, absolute levels of SRA, correlations between RGC pairs, RGC burst frequency, high frequency RGC firing during bursts, and the number of spikes per RGC burst are each uncorrelated with abnormalities in eye-specific segregation in the dLGN. An increase in the fraction of asynchronous spikes occurring outside of bursts and waves correlates with eye-specific segregation defects in studies reported to date. These findings highlight the relative importance of different features of SRA while providing additional constraints for computational models of Hebbian plasticity mechanisms in the developing visual system. Electronic supplementary material The online version of this article (doi:10.1186/1749-8104-9-25) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    High-performance probes for light and electron microscopy
    (2015) Viswanathan, Sarada; Williams, Megan E.; Bloss, Erik B.; Stasevich, Timothy J.; Speer, Colenso M.; Nern, Aljoscha; Pfeiffer, Barret D.; Hooks, Bryan M.; Li, Wei-Ping; English, Brian P.; Tian, Teresa; Henry, Gilbert L.; Macklin, John J.; Patel, Ronak; Gerfen, Charles R.; Zhuang, Xiaowei; Wang, Yalin; Rubin, Gerald M.; Looger, Loren L.
    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These “spaghetti monster” fluorescent proteins (smFPs) distribute well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localizes weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allow robust, orthogonal multi-color visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers, greatly increase the number of simultaneous imaging channels, and perform well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improve single-molecule image tracking and increase yield for RNA-Seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.