Person:
Li, Jia

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Li

First Name

Jia

Name

Li, Jia

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Electrophysiologic Biomarkers for Assessing Disease Progression and the Effect of Riluzole in SOD1 G93A ALS Mice
    (Public Library of Science, 2013) Li, Jia; Sung, Minhee; Rutkove, Seward
    Objective: To compare electrical impedance myography (EIM) 50 kHz phase to weight, motor score, paw grip endurance (PGE), CMAP amplitude, and MUNE for the identification of disease progression and the effect of riluzole in the SOD1 G93A mouse. Methods: Twenty-three animals received 8 mg/kg/day riluzole in the drinking water starting at 6 weeks of age; 22 animals served as controls. Weight, motor score, PGE, CMAP, MUNE, and EIM were performed weekly to evaluate disease progression. Results: No difference in clinical disease onset or survival was found between treated and untreated groups. In addition, all methods failed to identify any beneficial effect of riluzole. Thus, data from all animals were combined for additional analyses. Of the 4 parameters, EIM phase showed the earliest change from baseline and the most linear decline throughout the entire measurement period. In addition, EIM phase correlated with PGE, CMAP amplitude, and MUNE (Spearman r = 0.92, 0.90, and 0.72, respectively, p<0.01 for all). The rate of EIM phase decline also correlated with individual animal survival (Spearman r = −0.31, p<0.05). Conclusions: At this dose, riluzole is ineffective in slowing progression of ALS. However, EIM phase shows early linear declines, supporting its potential as a useful new biomarker for preclinical drug testing.
  • Thumbnail Image
    Publication
    A Comparison of Three Electrophysiological Methods for the Assessment of Disease Status in a Mild Spinal Muscular Atrophy Mouse Model
    (Public Library of Science, 2014) Li, Jia; Geisbush, Tom R.; Arnold, William D.; Rosen, Glenn; Zaworski, Phillip G.; Rutkove, Seward
    Objectives: There is a need for better, noninvasive quantitative biomarkers for assessing the rate of progression and possible response to therapy in spinal muscular atrophy (SMA). In this study, we compared three electrophysiological measures: compound muscle action potential (CMAP) amplitude, motor unit number estimate (MUNE), and electrical impedance myography (EIM) 50 kHz phase values in a mild mouse model of spinal muscular atrophy, the Smn1c/c mouse. Methods: Smn1c/c mice (N = 11) and wild type (WT) animals (−/−, N = 13) were measured on average triweekly until approximately 1 year of age. Measurements included CMAP, EIM, and MUNE of the gastrocnemius muscle as well as weight and front paw grip strength. At the time of sacrifice at one year, additional analyses were performed on the animals including serum survival motor neuron (SMN) protein levels and muscle fiber size. Results: Both EIM 50 kHz phase and CMAP showed strong differences between WT and SMA animals (repeated measures 2-way ANOVA, P<0.0001 for both) whereas MUNE did not. Both body weight and EIM showed differences in the trajectory over time (p<0.001 and p = 0.005, respectively). At the time of sacrifice at one year, EIM values correlated to motor neuron counts in the spinal cord and SMN levels across both groups of animals (r = 0.41, p = 0.047 and r = 0.57, p = 0.003, respectively), while CMAP did not. Motor neuron number in Smn1c/c mice was not significantly reduced compared to WT animals. Conclusions: EIM appears sensitive to muscle status in this mild animal model of SMA. The lack of a reduction in MUNE or motor neuron number but reduced EIM and CMAP values support that much of the pathology in these animals is distal to the cell body, likely at the neuromuscular junction or the muscle itself.
  • Thumbnail Image
    Publication
    Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice
    (Public Library of Science, 2015) Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey; Rutkove, Seward
    Objectives: Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Methods: Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg−1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. Results: As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Conclusions: Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.
  • Thumbnail Image
    Publication
    A Technique for Performing Electrical Impedance Myography in the Mouse Hind Limb: Data in Normal and ALS SOD1 G93A Animals
    (Public Library of Science, 2012) Li, Jia; Staats, Wayne L.; Spieker, Andrew; Sung, Minhee; Rutkove, Seward
    Objective: To test a method for performing electrical impedance myography (EIM) in the mouse hind limb for the assessment of disease status in neuromuscular disease models. Methods: An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS) animals. Repeatability was assessed in both groups. Results: The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-session repeatability (mean ± SEM) of 5% ±1% and 12% ±2%, respectively. Significant differences between healthy and ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 18±0.6° for the healthy animals and 14±1.0° for the ALS animals, p = 0.0025). Conclusions: With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS animals. Significance: EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of therapy.