Person:
Bryson, David I.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bryson

First Name

David I.

Name

Bryson, David I.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage
    (2017) Gaudelli, Nicole; Komor, Alexis C.; Rees, Holly; Packer, Michael S.; Badran, Ahmed; Bryson, David I.; Liu, David
    Summary The spontaneous deamination of cytosine is a major source of C•G to T•A transitions, which account for half of known human pathogenic point mutations. The ability to efficiently convert target A•T base pairs to G•C therefore could advance the study and treatment of genetic diseases. While the deamination of adenine yields inosine, which is treated as guanine by polymerases, no enzymes are known to deaminate adenine in DNA. Here we report adenine base editors (ABEs) that mediate conversion of A•T to G•C in genomic DNA. We evolved a tRNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs (e.g., ABE7.10), that convert target A•T to G•C base pairs efficiently (~50% in human cells) with very high product purity (typically ≥ 99.9%) and very low rates of indels (typically ≤ 0.1%). ABEs introduce point mutations more efficiently and cleanly than a current Cas9 nuclease-based method, induce less off-target genome modification than Cas9, and can install disease-correcting or disease-suppressing mutations in human cells. Together with our previous base editors, ABEs advance genome editing by enabling the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
  • Thumbnail Image
    Publication
    Continuous directed evolution of aminoacyl-tRNA synthetases
    (2017) Bryson, David I.; Fan, Chenguang; Guo, Li-Tao; Miller, Corwin; Söll, Dieter; Liu, David
    Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of non-canonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution. PACE of a chimeric Methanosarcina spp. pyrrolysyl-tRNA synthetase (PylRS) improved its enzymatic efficiency (kcat/KMtRNA) 45-fold compared to the parent enzyme. Transplantation of the evolved mutations into other PylRS-derived synthetases improved yields of proteins containing non-canonical residues up to 9.7-fold. Simultaneous positive and negative selection PACE over 48 h greatly improved the selectivity of a promiscuous Methanocaldococcus jannaschii tyrosyl-tRNA synthetase variant for site-specific incorporation of p-iodo-L-phenylalanine. These findings offer new AARSs that increase the utility of orthogonal translation systems and establish the capability of PACE to efficiently evolve orthogonal AARSs with high activity and amino acid specificity.
  • Thumbnail Image
    Publication
    Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase
    (2017) Suzuki, Tateki; Miller, Corwin; Guo, Li-Tao; Ho, Joanne M. L.; Bryson, David I.; Wang, Yane-Shih; Liu, David; Söll, Dieter
    Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion with non-canonical amino acids, yet understanding of its structure and activity is incomplete. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNAPyl. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans. The structure also illustrates why tRNAPyl recognition by PylRS is anticodon-independent; the anticodon does not contact the enzyme. Using standard microbiological culture equipment, we then established a new method for laboratory evolution – a non-continuous counterpart of the previously developed phage-assisted continuous evolution. With this method, we evolved novel PylRS variants with enhanced activity and amino acid specificity. We finally employed an evolved PylRS variant to determine its N-terminal domain structure and show how its mutations improve PylRS activity in the genetic encoding of a non-canonical amino acid.