Person: Mayadas, Tanya
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mayadas
First Name
Tanya
Name
Mayadas, Tanya
4 results
Search Results
Now showing 1 - 4 of 4
Publication AKAP9 regulates activation-induced retention of T lymphocytes at sites of inflammation(Nature Publishing Group, 2015) Herter, Jan M.; Grabie, Nir; Cullere, Xavier; Azcutia, Veronica; Rosetti, Florencia; Bennett, Paul; Herter-Sprie, Grit S.; Elyaman, Wassim; Luscinskas, Francis; Lichtman, Andrew; Mayadas, TanyaThe mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration into tissues and lymph nodes, but is required for T cell retention in tissues. AKAP9 deficiency results in increased T cell egress to draining lymph nodes, which is associated with impaired T cell re-activation in tissues and protection from organ damage. AKAP9-deficient T cells exhibit reduced microtubule-dependent recycling of TCRs back to the cell surface and this affects antigen-dependent activation, primarily by non-classical antigen-presenting cells. Thus, AKAP9-dependent TCR trafficking drives efficient T cell re-activation and extends their retention at sites of inflammation with implications for disease pathogenesis.Publication Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules(Nature Publishing Group, 2016) Buscher, Konrad; Wang, Huiyu; Zhang, Xueli; Striewski, Paul; Wirth, Benedikt; Saggu, Gurpanna; Lütke-Enking, Stefan; Mayadas, Tanya; Ley, Klaus; Sorokin, Lydia; Song, JianAcute peritonitis is a frequent medical condition that can trigger severe sepsis as a life-threatening complication. Neutrophils are first-responders in infection but recruitment mechanisms to the abdominal cavity remain poorly defined. Here, we demonstrate that high endothelial venules (HEVs) of the greater omentum constitute a main entry pathway in TNFα-, Escherichia coli (E. coli)- and caecal ligation and puncture-induced models of inflammation. Neutrophil transmigration across HEVs is faster than across conventional postcapillary venules and requires a unique set of adhesion receptors including peripheral node addressin, E-, L-selectin and Mac-1 but not P-selectin or LFA-1. Omental milky spots readily concentrate intra-abdominal E. coli where macrophages and recruited neutrophils collaborate in phagocytosis and killing. Inhibition of the omental neutrophil response exacerbates septic progression of peritonitis. This data identifies HEVs as a clinically relevant vascular recruitment site for neutrophils in acute peritonitis that is indispensable for host defence against early systemic bacterial spread and sepsis.Publication ICER is requisite for Th17 differentiation(Nature Publishing Group, 2016) Yoshida, Nobuya; Comte, Denis; Mizui, Masayuki; Otomo, Kotaro; Rosetti, Florencia; Mayadas, Tanya; Crispín, José C.; Bradley, Sean J.; Koga, Tomohiro; Kono, Michihito; Karampetsou, Maria P.; Kyttaris, Vasileios; Tenbrock, Klaus; Tsokos, GeorgeInducible cAMP early repressor (ICER) has been described as a transcriptional repressor isoform of the cAMP response element modulator (CREM). Here we report that ICER is predominantly expressed in Th17 cells through the IL-6–STAT3 pathway and binds to the Il17a promoter, where it facilitates the accumulation of the canonical enhancer RORγt. In vitro differentiation from naive ICER/CREM-deficient CD4+ T cells to Th17 cells is impaired but can be rescued by forced overexpression of ICER. Consistent with a role of Th17 cells in autoimmune and inflammatory diseases, ICER/CREM-deficient B6.lpr mice are protected from developing autoimmunity. Similarly, both anti-glomerular basement membrane-induced glomerulonephritis and experimental encephalomyelitis are attenuated in ICER/CREM-deficient mice compared with their ICER/CREM-sufficient littermates. Importantly, we find ICER overexpressed in CD4+ T cells from patients with systemic lupus erythematosus. Collectively, our findings identify a unique role for ICER, which affects both organ-specific and systemic autoimmunity in a Th17-dependent manner.Publication Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation(Elsevier, 2016) Okubo, Koshu; Kamiya, Mako; Urano, Yasuteru; Nishi, Hiroshi; Herter, Jan M.; Mayadas, Tanya; Hirohama, Daigoro; Suzuki, Kazuo; Kawakami, Hiroshi; Tanaka, Mototsugu; Kurosawa, Miho; Kagaya, Shinji; Hishikawa, Keiichi; Nangaku, Masaomi; Fujita, Toshiro; Hayashi, Matsuhiko; Hirahashi, JunichiNeutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs), which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.