Person: Triantafyllou, Christina
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Triantafyllou
First Name
Christina
Name
Triantafyllou, Christina
2 results
Search Results
Now showing 1 - 2 of 2
Publication Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age(Elsevier BV, 2010) Ghosh, Satrajit; Kakunoori, Sita; Augustinack, Jean; Nieto-Castanon, Alfonso; Kovelman, Ioulia; Gaab, Nadine; Christodoulou, Joanna; Triantafyllou, Christina; Gabrieli, John; Fischl, BruceUnderstanding the neurophysiology of human cognitive development relies on methods that enable accurate comparison of structural and functional neuroimaging data across brains from people of different ages. A fundamental question is whether the substantial brain growth and related changes in brain morphology that occur in early childhood permit valid comparisons of brain structure and function across ages. Here we investigated whether valid comparisons can be made in children from ages 4 to 11, and whether there are differences in the use of volume-based versus surface-based registration approaches for aligning structural landmarks across these ages. Regions corresponding to the calcarine sulcus, central sulcus, and Sylvian fissure in both the hemispheres were manually labeled on T1-weighted structural magnetic resonance images from 31 children ranging in age from 4.2 to 11.2 years old. Quantitative measures of shape similarity and volumetric-overlap of these manually labeled regions were calculated when brains were aligned using a 12-parameter affine transform, SPM's nonlinear normalization, a diffeomorphic registration (ANTS), and FreeSurfer's surface-based registration. Registration error for normalization into a common reference framework across participants in this age range was lower than commonly used functional imaging resolutions. Surface-based registration provided significantly better alignment of cortical landmarks than volume-based registration. In addition, registering children's brains to a common space does not result in an age-associated bias between older and younger children, making it feasible to accurately compare structural properties and patterns of brain activation in children from ages 4 to 11.Publication fMRI-compatible rehabilitation hand device(BioMed Central, 2006) Khanicheh, Azadeh; Muto, Andrew; Triantafyllou, Christina; Weinberg, Brian; Astrakas, Loukas; Tzika, Aria; Mavroidis, ConstantinosBackground: Functional magnetic resonance imaging (fMRI) has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR) compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers. Methods: This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (Magnetic Resonance Compatible Smart Hand Interfaced Rehabilitation Device). A novel feature of the device is the use of Electro-Rheological Fluids (ERFs) to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a) an ERF based resistive element; b) a gearbox; c) two handles and d) two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Results: Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed compatibility tests demonstrated that there is neither an effect from the MR environment on the ERF properties and performance of the sensors, nor significant degradation on MR images by the introduction of the MR_CHIROD in the MR scanner. Conclusion: The MR compatible hand device was built to aid in the study of brain function during generation of controllable and tunable force during handgrip exercising. The device was shown to be MR compatible. To the best of our knowledge, this is the first system that utilizes ERF in MR environment.