Person: Takeda, David
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Takeda
First Name
David
Name
Takeda, David
4 results
Search Results
Now showing 1 - 4 of 4
Publication A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men(Elsevier, 2015) Petrovics, Gyorgy; Li, Hua; Stümpel, Tanja; Tan, Shyh-Han; Young, Denise; Katta, Shilpa; Li, Qiyuan; Ying, Kai; Klocke, Bernward; Ravindranath, Lakshmi; Kohaar, Indu; Chen, Yongmei; Ribli, Dezső; Grote, Korbinian; Zou, Hua; Cheng, Joseph; Dalgard, Clifton L.; Zhang, Shimin; Csabai, István; Kagan, Jacob; Takeda, David; Loda, Massimo; Srivastava, Sudhir; Scherf, Matthias; Seifert, Martin; Gaiser, Timo; McLeod, David G.; Szallasi, Zoltan; Ebner, Reinhard; Werner, Thomas; Sesterhenn, Isabell A.; Freedman, Matthew; Dobi, Albert; Srivastava, ShivEvaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.Publication Association of tumour microRNA profiling with outcomes in patients with advanced urothelial carcinoma receiving first-line platinum-based chemotherapy(Nature Publishing Group, 2016) Bellmunt, Joaquim; Zhou, Chensheng Willa; Mullane, Stephanie A; Werner, Lillian; Taplin, Mary-Ellen; Fay, André P; Choueiri, Toni; Orsola, Anna; Takeda, David; Hahn, William; Kim, Jaegil; Sonpavde, Guru; Bowden, MichaelaBackground: Tumour expression of selected microRNAs (miRs) correlates with cisplatin efficacy in multiple cancers. We investigated the role of selected miRs in patients receiving cisplatin-based therapy for advanced urothelial carcinoma (UC). Methods: RNA was extracted from formalin-fixed paraffin-embedded tumour from 83 advanced UC patients who received cisplatin. A miR panel based on relevance for platinum sensitivity and UC was studied by quantitative reverse transcription quantitative PCR (RT–qPCR). Association of progression-free survival (PFS) with miR expression was analysed using cox regression. Selected TFs were chosen by association with the panel of miRs using the Transcription Regulation algorithm (GeneGo MetaCore+MetaDrug version 6.23 build 67496). Bladder cancer (BC) cell lines were used to investigate the previously described role of miR-21 mediating cisplatin sensitivity. Results: The 83 patients had a median PFS of 8 months. In multivariate analysis, higher levels of E2F1 (P=0.01, HR: 1.95 (1.14, 3.33)), miR-21 (P=0.01, HR: 2.01 (1.17, 3.45)) and miR-372 (P=0.05, HR: 1.70 (1.00, 2.89)) were associated with a shorter PFS. In the 8 BC cell lines, miR-21 was not shown to be necessary nor sufficient for modulating cisplatin sensitivity. Conclusions: In metastatic UC patients treated with cisplatin-based therapy, high primary tumour levels of E2F1, miR-21 and miR-372 are associated with poor PFS independent of clinical prognostic factors. The in vitro study could not confirm miR-21 levels role in modulating platinum sensitivity.Publication The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis(2015) Pomerantz, Mark; Li, Fugen; Takeda, David; Lenci, Romina; Chonkar, Apurva; Chabot, Matthew; Cejas, Paloma; Vazquez, Francisca; Cook, Jennifer; Shivdasani, Ramesh; Bowden, Michaela; Lis, Rosina; Hahn, William; Kantoff, Philip; Brown, Myles; Loda, Massimo; Long, Henry; Freedman, MatthewMaster transcription factors interact with DNA to establish cell-type identity and to regulate gene expression in mammalian cells1,2. The genome-wide map of these transcription factor binding sites has been termed the cistrome3. Here we show that the androgen receptor (AR) cistrome undergoes extensive reprogramming during prostate epithelial transformation in man. Using human prostate tissue, we observed a core set of AR binding sites that are consistently reprogrammed in tumors. FOXA1 and HOXB13, co-localized with the reprogrammed AR sites in human tumor tissue. Introduction of FOXA1 and HOXB13 into an immortalized prostate cell line reprogrammed the AR cistrome to resemble that of a prostate tumor, functionally linking these specific factors to AR reprogramming. These findings offer mechanistic insights into a key set of events that drive normal prostate epithelium towards transformation and establish the centrality of epigenetic reprogramming in human prostate tumorigenesis.Publication Genetic Determinants of Chromatin Reveal Prostate Cancer Risk Mediated by Context-Dependent Gene Regulation(Cold Spring Harbor Laboratory, 2022-09-07) Baca, Sylvan; Singler, Cassandra; Zacharia, Soumya; Seo, Ji-Heui; Morova, Tunc; Hach, Faraz; Ding, Yi; Schwarz, Tommer; Huang, Chia-Chi Flora; Anderson, Jacob; Fay, Andre; Kalita, Cynthia; Groha, Stefan; Pomerantz, Mark; Wang, Victoria; Linder, Simon; Sweeney, Christopher; Zwart, Wilbert; Lack, Nathan A.; Pasaniuc, Bogdan; Takeda, David; Gusev, Alexander; Freedman, MatthewAbstractMethods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs), are widely used to functionally annotate trait-associated variants, but they are limited in identifying context-dependent effects on transcription. To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for nominating variants that impact traits through their effects on chromatin state. CWAS associates the genetic determinants of cistromes (e.g., the genome-wide profiles of transcription factor binding sites or histone modifications) with traits using summary statistics from genome-wide association studies (GWAS). We performed CWASs of prostate cancer and androgen-related traits, using a reference panel of 307 prostate cistromes from 165 individuals. CWAS nominated susceptibility regulatory elements or androgen receptor (AR) binding sites at 52 out of 98 known prostate cancer GWAS loci and implicated an additional 17 novel loci. We functionally validated a subset of our results using CRISPRi and in vitro reporter assays. At 28 of the 52 risk loci, CWAS identified regulatory mechanisms that are not observable via eQTLs, implicating genes with complex or context-specific regulation that are overlooked by current approaches that relying on steady-state transcript measurements. CWAS genes include transcription factors that govern prostate development such as NKX3-1, HOXB13, GATA2, and KLF5. Moreover, CWAS boosts discovery power in modestly sized GWAS, identifying novel genetic associations mediated through AR binding for androgen-related phenotypes, including resistance to prostate cancer therapy. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting context-dependent transcriptional regulation.