Person:
Savova, Guergana

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Savova

First Name

Guergana

Name

Savova, Guergana

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    Publication
    Clinical Natural Language Processing in languages other than English: opportunities and challenges
    (BioMed Central, 2018) Névéol, Aurélie; Dalianis, Hercules; Velupillai, Sumithra; Savova, Guergana; Zweigenbaum, Pierre
    Background: Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages other than English. Recent studies are summarized to offer insights and outline opportunities in this area. Main Body We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and (3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another language, and (iii) studies focusing on a particular clinical application. Conclusion: We show the advantages and drawbacks of each method, and highlight the appropriate application context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice and public health studies in a context that encompasses English as well as other languages.
  • Thumbnail Image
    Publication
    Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records
    (Public Library of Science, 2013) Xia, Zongqi; Secor, Elizabeth; Chibnik, Lori; Bove, Riley; Cheng, Suchun; Chitnis, Tanuja; Cagan, Andrew; Gainer, Vivian S.; Chen, Pei J.; Liao, Katherine; Shaw, Stanley; Ananthakrishnan, Ashwin; Szolovits, Peter; Weiner, Howard; Karlson, Elizabeth; Murphy, Shawn; Savova, Guergana; Cai, Tianxi; Churchill, Susanne E.; Plenge, Robert M.; Kohane, Isaac; De Jager, Philip
    Objective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings. Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume). Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R2 = 0.38±0.05, and that between EHR-derived and true BPF has a mean R2 = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10−12). Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.
  • Thumbnail Image
    Publication
    Automatic Prediction of Rheumatoid Arthritis Disease Activity from the Electronic Medical Records
    (Public Library of Science, 2013) Lin, Chen; Karlson, Elizabeth; Canhao, Helena; Miller, Timothy; Dligach, Dmitriy; Chen, Pei Jun; Perez, Raul Natanael Guzman; Shen, Yuanyan; Weinblatt, Michael; Shadick, Nancy; Plenge, Robert M.; Savova, Guergana
    Objective: We aimed to mine the data in the Electronic Medical Record to automatically discover patients' Rheumatoid Arthritis disease activity at discrete rheumatology clinic visits. We cast the problem as a document classification task where the feature space includes concepts from the clinical narrative and lab values as stored in the Electronic Medical Record. Materials and Methods The Training Set consisted of 2792 clinical notes and associated lab values. Test Set 1 included 1749 clinical notes and associated lab values. Test Set 2 included 344 clinical notes for which there were no associated lab values. The Apache clinical Text Analysis and Knowledge Extraction System was used to analyze the text and transform it into informative features to be combined with relevant lab values. Results: Experiments over a range of machine learning algorithms and features were conducted. The best performing combination was linear kernel Support Vector Machines with Unified Medical Language System Concept Unique Identifier features with feature selection and lab values. The Area Under the Receiver Operating Characteristic Curve (AUC) is 0.831 (σ = 0.0317), statistically significant as compared to two baselines (AUC = 0.758, σ = 0.0291). Algorithms demonstrated superior performance on cases clinically defined as extreme categories of disease activity (Remission and High) compared to those defined as intermediate categories (Moderate and Low) and included laboratory data on inflammatory markers. Conclusion: Automatic Rheumatoid Arthritis disease activity discovery from Electronic Medical Record data is a learnable task approximating human performance. As a result, this approach might have several research applications, such as the identification of patients for genome-wide pharmacogenetic studies that require large sample sizes with precise definitions of disease activity and response to therapies.
  • Thumbnail Image
    Publication
    Discovering body site and severity modifiers in clinical texts
    (BMJ Publishing Group, 2014) Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana
    Objective: To research computational methods for discovering body site and severity modifiers in clinical texts. Methods: We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. Results: The performance of our method for discovering body site modifiers achieves F1 of 0.740–0.908 and our method for discovering severity modifiers achieves F1 of 0.905–0.929. Discussion Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. Conclusions: We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).
  • Thumbnail Image
    Publication
    Large-scale evaluation of automated clinical note de-identification and its impact on information extraction
    (BMJ Group, 2012) Deleger, Louise; Molnar, Katalin; Savova, Guergana; Xia, Fei; Lingren, Todd; Li, Qi; Marsolo, Keith; Jegga, Anil; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
    Objective: (1) To evaluate a state-of-the-art natural language processing (NLP)-based approach to automatically de-identify a large set of diverse clinical notes. (2) To measure the impact of de-identification on the performance of information extraction algorithms on the de-identified documents. Material and methods A cross-sectional study that included 3503 stratified, randomly selected clinical notes (over 22 note types) from five million documents produced at one of the largest US pediatric hospitals. Sensitivity, precision, F value of two automated de-identification systems for removing all 18 HIPAA-defined protected health information elements were computed. Performance was assessed against a manually generated ‘gold standard’. Statistical significance was tested. The automated de-identification performance was also compared with that of two humans on a 10% subsample of the gold standard. The effect of de-identification on the performance of subsequent medication extraction was measured. Results: The gold standard included 30 815 protected health information elements and more than one million tokens. The most accurate NLP method had 91.92% sensitivity (R) and 95.08% precision (P) overall. The performance of the system was indistinguishable from that of human annotators (annotators' performance was 92.15%(R)/93.95%(P) and 94.55%(R)/88.45%(P) overall while the best system obtained 92.91%(R)/95.73%(P) on same text). The impact of automated de-identification was minimal on the utility of the narrative notes for subsequent information extraction as measured by the sensitivity and precision of medication name extraction. Discussion and conclusion NLP-based de-identification shows excellent performance that rivals the performance of human annotators. Furthermore, unlike manual de-identification, the automated approach scales up to millions of documents quickly and inexpensively.
  • Thumbnail Image
    Publication
    Towards comprehensive syntactic and semantic annotations of the clinical narrative
    (BMJ Publishing Group, 2013) Albright, Daniel; Lanfranchi, Arrick; Fredriksen, Anwen; Styler, William F; Warner, Colin; Hwang, Jena D; Choi, Jinho D; Dligach, Dmitriy; Nielsen, Rodney D; Martin, James; Ward, Wayne; Palmer, Martha; Savova, Guergana
    Objective: To create annotated clinical narratives with layers of syntactic and semantic labels to facilitate advances in clinical natural language processing (NLP). To develop NLP algorithms and open source components. Methods: Manual annotation of a clinical narrative corpus of 127 606 tokens following the Treebank schema for syntactic information, PropBank schema for predicate-argument structures, and the Unified Medical Language System (UMLS) schema for semantic information. NLP components were developed. Results: The final corpus consists of 13 091 sentences containing 1772 distinct predicate lemmas. Of the 766 newly created PropBank frames, 74 are verbs. There are 28 539 named entity (NE) annotations spread over 15 UMLS semantic groups, one UMLS semantic type, and the Person semantic category. The most frequent annotations belong to the UMLS semantic groups of Procedures (15.71%), Disorders (14.74%), Concepts and Ideas (15.10%), Anatomy (12.80%), Chemicals and Drugs (7.49%), and the UMLS semantic type of Sign or Symptom (12.46%). Inter-annotator agreement results: Treebank (0.926), PropBank (0.891–0.931), NE (0.697–0.750). The part-of-speech tagger, constituency parser, dependency parser, and semantic role labeler are built from the corpus and released open source. A significant limitation uncovered by this project is the need for the NLP community to develop a widely agreed-upon schema for the annotation of clinical concepts and their relations. Conclusions: This project takes a foundational step towards bringing the field of clinical NLP up to par with NLP in the general domain. The corpus creation and NLP components provide a resource for research and application development that would have been previously impossible.
  • Thumbnail Image
    Publication
    Normalizing acronyms and abbreviations to aid patient understanding of clinical texts: ShARe/CLEF eHealth Challenge 2013, Task 2
    (BioMed Central, 2016) Mowery, Danielle L.; South, Brett R.; Christensen, Lee; Leng, Jianwei; Peltonen, Laura-Maria; Salanterä, Sanna; Suominen, Hanna; Martinez, David; Velupillai, Sumithra; Elhadad, Noémie; Savova, Guergana; Pradhan, Sameer; Chapman, Wendy W.
    Background: The ShARe/CLEF eHealth challenge lab aims to stimulate development of natural language processing and information retrieval technologies to aid patients in understanding their clinical reports. In clinical text, acronyms and abbreviations, also referenced as short forms, can be difficult for patients to understand. For one of three shared tasks in 2013 (Task 2), we generated a reference standard of clinical short forms normalized to the Unified Medical Language System. This reference standard can be used to improve patient understanding by linking to web sources with lay descriptions of annotated short forms or by substituting short forms with a more simplified, lay term. Methods: In this study, we evaluate 1) accuracy of participating systems’ normalizing short forms compared to a majority sense baseline approach, 2) performance of participants’ systems for short forms with variable majority sense distributions, and 3) report the accuracy of participating systems’ normalizing shared normalized concepts between the test set and the Consumer Health Vocabulary, a vocabulary of lay medical terms. Results: The best systems submitted by the five participating teams performed with accuracies ranging from 43 to 72 %. A majority sense baseline approach achieved the second best performance. The performance of participating systems for normalizing short forms with two or more senses with low ambiguity (majority sense greater than 80 %) ranged from 52 to 78 % accuracy, with two or more senses with moderate ambiguity (majority sense between 50 and 80 %) ranged from 23 to 57 % accuracy, and with two or more senses with high ambiguity (majority sense less than 50 %) ranged from 2 to 45 % accuracy. With respect to the ShARe test set, 69 % of short form annotations contained common concept unique identifiers with the Consumer Health Vocabulary. For these 2594 possible annotations, the performance of participating systems ranged from 50 to 75 % accuracy. Conclusion: Short form normalization continues to be a challenging problem. Short form normalization systems perform with moderate to reasonable accuracies. The Consumer Health Vocabulary could enrich its knowledge base with missed concept unique identifiers from the ShARe test set to further support patient understanding of unfamiliar medical terms.
  • Thumbnail Image
    Publication
    Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder
    (Public Library of Science, 2016) Lingren, Todd; Chen, Pei; Bochenek, Joseph; Doshi-Velez, Finale; Manning-Courtney, Patty; Bickel, Julie; Wildenger Welchons, Leah; Reinhold, Judy; Bing, Nicole; Ni, Yizhao; Barbaresi, William; Mentch, Frank; Basford, Melissa; Denny, Joshua; Vazquez, Lyam; Perry, Cassandra; Namjou, Bahram; Qiu, Haijun; Connolly, John; Abrams, Debra; Holm, Ingrid; Cobb, Beth A.; Lingren, Nataline; Solti, Imre; Hakonarson, Hakon; Kohane, Isaac; Harley, John; Savova, Guergana
    Objective: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD. Methods: We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children’s Hospital (BCH) (N = 150) and Cincinnati Children’s Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups. Results: The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children’s Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters. Conclusions: In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.
  • Thumbnail Image
    Publication
    Suboptimal Clinical Documentation in Young Children with Severe Obesity at Tertiary Care Centers
    (Hindawi Publishing Corporation, 2016) Brady, Cassandra C.; Thaker, Vidhu V.; Lingren, Todd; Woo, Jessica G.; Kennebeck, Stephanie S.; Namjou-Khales, Bahram; Roach, Ashton; Bickel, Jonathan; Patibandla, Nandan; Savova, Guergana; Solti, Imre; Holm, Ingrid; Harley, John B.; Kohane, Isaac; Crimmins, Nancy A.
    Background and Objectives. The prevalence of severe obesity in children has doubled in the past decade. The objective of this study is to identify the clinical documentation of obesity in young children with a BMI ≥ 99th percentile at two large tertiary care pediatric hospitals. Methods. We used a standardized algorithm utilizing data from electronic health records to identify children with severe early onset obesity (BMI ≥ 99th percentile at age <6 years). We extracted descriptive terms and ICD-9 codes to evaluate documentation of obesity at Boston Children's Hospital and Cincinnati Children's Hospital and Medical Center between 2007 and 2014. Results. A total of 9887 visit records of 2588 children with severe early onset obesity were identified. Based on predefined criteria for documentation of obesity, 21.5% of children (13.5% of visits) had positive documentation, which varied by institution. Documentation in children first seen under 2 years of age was lower than in older children (15% versus 26%). Documentation was significantly higher in girls (29% versus 17%, p < 0.001), African American children (27% versus 19% in whites, p < 0.001), and the obesity focused specialty clinics (70% versus 15% in primary care and 9% in other subspecialty clinics, p < 0.001). Conclusions. There is significant opportunity for improvement in documentation of obesity in young children, even years after the 2007 AAP guidelines for management of obesity.
  • Thumbnail Image
    Publication
    Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
    (Oxford University Press, 2014) Pradhan, Sameer; Elhadad, Noémie; South, Brett R; Martinez, David; Christensen, Lee; Vogel, Amy; Suominen, Hanna; Chapman, Wendy W; Savova, Guergana
    Objective: The ShARe/CLEF eHealth 2013 Evaluation Lab Task 1 was organized to evaluate the state of the art on the clinical text in (i) disorder mention identification/recognition based on Unified Medical Language System (UMLS) definition (Task 1a) and (ii) disorder mention normalization to an ontology (Task 1b). Such a community evaluation has not been previously executed. Task 1a included a total of 22 system submissions, and Task 1b included 17. Most of the systems employed a combination of rules and machine learners. Materials and methods We used a subset of the Shared Annotated Resources (ShARe) corpus of annotated clinical text—199 clinical notes for training and 99 for testing (roughly 180 K words in total). We provided the community with the annotated gold standard training documents to build systems to identify and normalize disorder mentions. The systems were tested on a held-out gold standard test set to measure their performance. Results: For Task 1a, the best-performing system achieved an F1 score of 0.75 (0.80 precision; 0.71 recall). For Task 1b, another system performed best with an accuracy of 0.59. Discussion Most of the participating systems used a hybrid approach by supplementing machine-learning algorithms with features generated by rules and gazetteers created from the training data and from external resources. Conclusions: The task of disorder normalization is more challenging than that of identification. The ShARe corpus is available to the community as a reference standard for future studies.