Person: Kim, Kwang-Soo
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kim
First Name
Kwang-Soo
Name
Kim, Kwang-Soo
7 results
Search Results
Now showing 1 - 7 of 7
Publication Early Postnatal but Not Late Adult Neurogenesis Is Impaired in the Pitx3-Mutant Animal Model of Parkinson's Disease(Frontiers Media S.A., 2017) Brandt, Moritz D.; Krüger-Gerlach, Diana; Hermann, Andreas; Meyer, Anne K.; Kim, Kwang-Soo; Storch, AlexanderThe generation of new neurons in the adult dentate gyrus has functional implications for hippocampal formation. Reduced hippocampal neurogenesis has been described in various animal models of hippocampal dysfunction such as dementia and depression, which are both common non-motor-symptoms of Parkinson's disease (PD). As dopamine plays an important role in regulating precursor cell proliferation, the loss of dopaminergic neurons in the substantia nigra (SN) in PD may be related to the reduced neurogenesis observed in the neurogenic regions of the adult brain: subventricular zone (SVZ) and dentate gyrus (DG). Here we examined adult hippocampal neurogenesis in the Pitx3-mutant mouse model of PD (aphakia mice), which phenotypically shows a selective embryonic degeneration of dopamine neurons within the SN and to a smaller extent in the ventral tegmental area (VTA). Proliferating cells were labeled with BrdU in aphakia mice and healthy controls from 3 to 42 weeks of age. Three weeks old mutant mice showed an 18% reduction of proliferating cells in the DG and of 26% in the SVZ. Not only proliferation but also the number of new neurons was impaired in young aphakia mice resulting in 33% less newborn cells 4 weeks after BrdU-labeling. Remarkably, however, the decline in the number of proliferating cells in the neurogenic regions vanished in older animals (8–42 weeks) indicating that aging masks the effect of dopamine depletion on adult neurogenesis. Region specific reduction in precursor cells proliferation correlated with the extent of dopaminergic degeneration in mesencephalic subregions (VTA and SN), which supports the theory of age- and region-dependent regulatory effects of dopaminergic projections. Physiological stimulation of adult neurogenesis by physical activity (wheel running) almost doubled the number of proliferating cells in the dentate gyrus of 8 weeks old aphakia mice to a number comparable to that of wild-type mice, abolishing the slight reduction of baseline neurogenesis at this age. The described age-dependent susceptibility of adult neurogenesis to PD-like dopaminergic degeneration and its responsiveness to physical activity might have implications for the understanding of the pathophysiology and treatment of non-motor symptoms in PD.Publication The Korean Mistletoe (Viscum album coloratum) Extract Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity(Hindawi Publishing Corporation, 2013) Jung, Hoe-Yune; Kim, Yu-Hee; Kim, In-Bo; Jeong, Ju Seong; Lee, Jung-Han; Do, Myoung-Sool; Jung, Seung-Pil; Kim, Kwang-Soo; Kim, Kyong-Tai; Kim, Jong-BaeThis study investigates the inhibitory effects of Korean mistletoe extract (KME) on adipogenic factors in 3T3-L1 cells and obesity and nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Male C57Bl/6 mice fed a high-fat diet were treated with KME (3 g/kg/day) for 15 weeks for the antiobesity and NAFLD experiments. Body weight and daily food intake were measured regularly during the experimental period. The epididymal pad was measured and liver histology was observed. The effects of KME on thermogenesis and endurance capacity were measured. The effects of KME on adipogenic factors were examined in 3T3-L1 cells. Body and epididymal fat pad weights were reduced in KME-treated mice, and histological examination showed an amelioration of fatty liver in KME-treated mice, without an effect on food consumption. KME potently induces mitochondrial activity by activating thermogenesis and improving endurance capacity. KME also inhibited adipogenic factors in vitro. These results demonstrate the inhibitory effects of KME on obesity and NAFLD in mice fed a high-fat diet. The effects appear to be mediated through an enhanced mitochondrial activity. Therefore, KME may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.Publication Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells(Elsevier, 2014) Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, RobertSummary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.Publication The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s disease(BioMed Central, 2015) Mata, Ignacio F.; Jang, Yongwoo; Kim, Chun-Hyung; Hanna, David S.; Dorschner, Michael O.; Samii, Ali; Agarwal, Pinky; Roberts, John W.; Klepitskaya, Olga; Shprecher, David R.; Chung, Kathryn A.; Factor, Stewart A.; Espay, Alberto J.; Revilla, Fredy J.; Higgins, Donald S.; Litvan, Irene; Leverenz, James B.; Yearout, Dora; Inca-Martinez, Miguel; Martinez, Erica; Thompson, Tiffany R.; Cholerton, Brenna A.; Hu, Shu-Ching; Edwards, Karen L.; Kim, Kwang-Soo; Zabetian, Cyrus P.Objective: To identify the causal gene in a multi-incident U.S. kindred with Parkinson’s disease (PD). Methods: We characterized a family with a classical PD phenotype in which 7 individuals (5 males and 2 females) were affected with a mean age at onset of 46.1 years (range, 29-57 years). We performed whole exome sequencing on 4 affected and 1 unaffected family members. Sanger-sequencing was then used to verify and genotype all candidate variants in the remainder of the pedigree. Cultured cells transfected with wild-type or mutant constructs were used to characterize proteins of interest. Results: We identified a missense mutation (c.574G > A; p.G192R) in the RAB39B gene that closely segregated with disease and exhibited X-linked dominant inheritance with reduced penetrance in females. The mutation occurred in a highly conserved amino acid residue and was not observed among 87,725 X chromosomes in the Exome Aggregation Consortium dataset. Sequencing of the RAB39B coding region in 587 familial PD cases yielded two additional mutations (c.428C > G [p.A143G] and c.624_626delGAG [p.R209del]) that were predicted to be deleterious in silico but occurred in families that were not sufficiently informative to assess segregation with disease. Experiments in PC12 and SK-N-BE(2)C cells demonstrated that p.G192R resulted in mislocalization of the mutant protein, possibly by altering the structure of the hypervariable C-terminal domain which mediates intracellular targeting. Conclusions: Our findings implicate RAB39B, an essential regulator of vesicular-trafficking, in clinically typical PD. Further characterization of normal and aberrant RAB39B function might elucidate important mechanisms underlying neurodegeneration in PD and related disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0045-4) contains supplementary material, which is available to authorized users.Publication Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion(The Korean Society for Reproductive Medicine, 2013) Na, Kyu-Hwan; Choi, Jong Ho; Kim, Chun-Hyung; Kim, Kwang-Soo; Kim, Gi JinObjective: We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation. Methods: NET and NE expression levels were examined by western blot and enzyme-linked immunosorbent assay, respectively. Trophoblast invasion activity, depending on NE-NET regulation, was determined by NET-small interfering RNA (siRNA) and NET transfection into the human extravillous trophoblast cells with or without NE treatment and invasion rates were analyzed by zymography and an invasion assay. Results: NET mRNA was expressed at a low level in pre-eclamptic placentas compared with normal placentas and NE concentration in maternal plasma increased significantly in pre-eclamptic women compared to normal pregnant women (p<0.05). NET gene upregulation and NE treatment stimulated trophoblast cell invasion up to 2.5-fold (p<0.05) by stimulating matrix metalloproteinase-9 activity via the phosphoinositol-3-kinase/AKT signaling pathway, whereas NET-siRNA with NE treatment reduced invasion rates. Conclusion: NET expression is reduced by inadequate regulation of NE levels during placental development. This suggests that a complementary balance between NET and NE regulates trophoblast cell invasion activities during placental development.Publication Direct Reprogramming of Rat Neural Precursor Cells and Fibroblasts into Pluripotent Stem Cells(Public Library of Science, 2010) Kang, Hoon-Chul; Yang, Eungi; Park, Kyung-Soon; Lee, Kyung-Ah; Hwang, Dong-Youn; Lanza, Robert; Reh, Thomas A.; Chang, Mi-Yoon; Kim, Chun-Hyung; Kim, Dohoon; Moon, Jung-Il; Ko, Sanghyeok; Park, Junpil; Chung, Young; Kim, Kwang-SooBackground: Given the usefulness of rats as an experimental system, an efficient method for generating rat induced pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease. Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2, Klf4, c-Myc, and Nanog) genes. Methodology and Principal Findings: iPS cells were generated from both NP and REF using only three (Oct3/4, Sox2, and Klf4) genes without c-Myc. Two factors were found to be critical for efficient derivation and maintenance of rat iPS cells: the use of rat instead of mouse feeders, and the use of small molecules specifically inhibiting mitogen-activated protein kinase and glycogen synthase kinase 3 pathways. In contrast, introduction of embryonic stem cell (ESC) extracts induced partial reprogramming, but failed to generate iPS cells. However, when combined with retroviral transduction, this method generated iPS cells with significantly higher efficiency. Morphology, gene expression, and epigenetic status confirmed that these rat iPS cells exhibited ESC-like properties, including the ability to differentiate into all three germ layers both in vitro and in teratomas. In particular, we found that these rat iPS cells could differentiate to midbrain-like dopamine neurons with a high efficiency. Conclusions/Significance: Given the usefulness of rats as an experimental system, our optimized method would be useful for generating rat iPS cells from diverse tissues and provide researchers with a powerful tool for studying human physiology and disease.Publication Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson’s disease(2017) Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, LaurentMouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.