Person:
Korzennik, Sylvain

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Korzennik

First Name

Sylvain

Name

Korzennik, Sylvain

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Visible Wavelength Astro-Comb
    (Optical Society of America (OSA), 2010) Benedick, Andrew J.; Chang, Guoqing; Birge, Jonathan R.; Chen, Li-Jin; Glenday, Alexander; Li, Chih-Hao; Phillips, David; Szentgyorgyi, Andrew; Korzennik, Sylvain; Furesz, Gabor; Walsworth, Ronald; Kärtner, Franz X.
    We demonstrate a tunable laser frequency comb operating near 420 nm with mode spacing of 20-50 GHz, usable bandwidth of 15 nm and output power per line of ~20 nW. Using the TRES spectrograph at the Fred Lawrence Whipple Observatory, we characterize this system to an accuracy below 1m/s, suitable for calibrating high-resolution astrophysical spectrographs used, e.g., in exoplanet studies.
  • Thumbnail Image
    Publication
    In-Situ Determination of Astro-Comb Calibrator Lines to Better Than 10 cm \(s^{-1}\)
    (Optical Society of America (OSA), 2010) Li, Chih-Hao; Glenday, Alexander; Benedick, Andrew J.; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X.; Korzennik, Sylvain; Phillips, David; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald
    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.
  • Thumbnail Image
    Publication
    In-situ determination of astro-comb calibrator lines to better than \(\textrm{10 cm s}^{-1}\)
    (Optical Society of America, 2010) Li, Chih-Hao; Glenday, Alexander G.; Benedick, Andrew J.; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X.; Korzennik, Sylvain; Phillips, David M.; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald
    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.
  • Thumbnail Image
    Publication
    A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4
    (Institute of Physics, 2009) Sozzetti, Alessandro; Torres, Guillermo; Charbonneau, David; Winn, Joshua N.; Korzennik, Sylvain; Holman, Matthew; Latham, David; Laird, John B.; Fernandez, Jose; O'Donovan, Francis T.; Mandushev, Georgi; Dunham, Edward; Everett, Mark E.; Esquerdo, Gilbert A.; Rabus, Markus; Belmonte, Juan A.; Deeg, Hans J.; Brown, Timothy N.; Hidas, Marton G.; Baliber, Nairn
    We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H] = –0.19 ± 0.08, T eff = 5650 ± 75 K, and log g = 4.4 ± 0.1 for TrES-3, and [Fe/H] = +0.14 ± 0.09, T eff = 6200 ± 75 K, and log g = 4.0 ± 0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. We have redetermined the stellar parameters taking advantage of the strong constraint provided by the light curves in the form of the normalized separation a/R sstarf (related to the stellar density) in conjunction with our new temperatures and metallicities. The masses and radii we derive are M sstarf = 0.928+0.028 –0.048 M sun, R sstarf = 0.829+0.015 –0.022 R sun, and M sstarf = 1.404+0.066 –0.134 M sun, R sstarf = 1.846+0.096 –0.087 R sun for TrES-3 and TrES-4, respectively. With these revised stellar parameters, we obtain improved values for the planetary masses and radii. We find Mp = 1.910+0.075 –0.080 M Jup, Rp = 1.336+0.031 –0.036 R Jup for TrES-3, and Mp = 0.925 ± 0.082 M Jup, Rp = 1.783+0.093 –0.086 R Jup for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters.