Person:
Young, Sarah

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Young

First Name

Sarah

Name

Young, Sarah

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts
    (Nature Publishing Group, 2016) Ma, Liang; Chen, Zehua; Huang, Da Wei; Kutty, Geetha; Ishihara, Mayumi; Wang, Honghui; Abouelleil, Amr; Bishop, Lisa; Davey, Emma; Deng, Rebecca; Deng, Xilong; Fan, Lin; Fantoni, Giovanna; Fitzgerald, Michael; Gogineni, Emile; Goldberg, Jonathan; Handley, Grace; Hu, Xiaojun; Huber, Charles; Jiao, Xiaoli; Jones, Kristine; Levin, Joshua Z.; Liu, Yueqin; Macdonald, Pendexter; Melnikov, Alexandre; Raley, Castle; Sassi, Monica; Sherman, Brad T.; Song, Xiaohong; Sykes, Sean; Tran, Bao; Walsh, Laura; Xia, Yun; Yang, Jun; Young, Sarah; Zeng, Qiandong; Zheng, Xin; Stephens, Robert; Nusbaum, Chad; Birren, Bruce W.; Azadi, Parastoo; Lempicki, Richard A.; Cuomo, Christina A.; Kovacs, Joseph A.
    Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.
  • Thumbnail Image
    Publication
    Sequence-Based Discovery of Bradyrhizobium enterica in Cord Colitis Syndrome
    (New England Journal of Medicine (NEJM/MMS), 2013) Bhatt, Ami; Freeman, Sam; Herrera, Alex Francisco; Pedamallu, Chandra Sekhar; Gevers, Dirk; Duke, Fujiko; Jung, Joonil; Michaud, Monia; Walker, Bruce; Young, Sarah; Earl, Ashlee M.; Kostic, Aleksander D.; Ojesina, Akinyemi Ifedapo; Hasserjian, Robert; Ballen, Karen Kuhn; Chen, Yi-Bin; Hobbs, Gabriela; Antin, Joseph; Soiffer, Robert; Baden, Lindsey; Garrett, Wendy; Hornick, Jason; Marty, Francisco; Meyerson, Matthew
    BACKGROUND—Immunosuppression is associated with a variety of idiopathic clinical syndromes that may have infectious causes. It has been hypothesized that the cord colitis syndrome, a complication of umbilical-cord hematopoietic stem-cell transplantation, is infectious in origin. METHODS—We performed shotgun DNA sequencing on four archived, paraffin-embedded endoscopic colon-biopsy specimens obtained from two patients with cord colitis. Computational subtraction of human and known microbial sequences and assembly of residual sequences into a bacterial draft genome were performed. We used polymerase-chain-reaction (PCR) assays and fluorescence in situ hybridization to determine whether the corresponding bacterium was present in additional patients and controls. RESULTS—DNA sequencing of the biopsy specimens revealed more than 2.5 million sequencing reads that did not match known organisms. These sequences were computationally assembled into a 7.65-Mb draft genome showing a high degree of homology with genomes of bacteria in the bradyrhizobium genus. The corresponding newly discovered bacterium was provisionally named Bradyrhizobium enterica. PCR identified B. enterica nucleotide sequences in biopsy specimens from all three additional patients with cord colitis whose samples were tested, whereas B. enterica sequences were absent in samples obtained from healthy controls and patients with colon cancer or graft-versus-host disease. CONCLUSIONS—We assembled a novel bacterial draft genome from the direct sequencing of tissue specimens from patients with cord colitis. Association of these sequences with cord colitis suggests that B. enterica may be an opportunistic human pathogen.
  • Thumbnail Image
    Publication
    Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies
    (Public Library of Science, 2009) Champion, Mia D.; Zeng, Qiandong; Nix, Eli B.; Nano, Francis E.; Keim, Paul; Kodira, Chinnappa D.; Koehrsen, Michael; Pearson, Matthew; Howarth, Clint; Larson, Lisa; White, Jared; Alvarado, Lucia; Forsman, Mats; Bearden, Scott W.; Sjöstedt, Anders; Titball, Richard; Michell, Stephen L.; Birren, Bruce; Borowsky, Mark L; Young, Sarah; Engels, Reinhard; Galagan, James E.
    Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.