Person:
Munger, J.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Munger

First Name

J.

Name

Munger, J.

Search Results

Now showing 1 - 10 of 35
  • Thumbnail Image
    Publication
    Atmospheric deposition, CO2, and change in the land carbon sink
    (Nature Publishing Group UK, 2017) Fernández-Martínez, M.; Vicca, S.; Janssens, I. A.; Ciais, P.; Obersteiner, M.; Bartrons, M.; Sardans, J.; Verger, A.; Canadell, J. G.; Chevallier, F.; Wang, X.; Bernhofer, C.; Curtis, P. S.; Gianelle, D.; Grünwald, T.; Heinesch, B.; Ibrom, A.; Knohl, A.; Laurila, T.; Law, B. E.; Limousin, J. M.; Longdoz, B.; Loustau, D.; Mammarella, I.; Matteucci, G.; Monson, R. K.; Montagnani, L.; Moors, E. J.; Munger, J.; Papale, D.; Piao, S. L.; Peñuelas, J.
    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.
  • Thumbnail Image
    Publication
    Nitrogen Deposition to the United States: Distribution, Sources, and Processes
    (European Geosciences Union, 2012) Zhang, Lin; Jacob, Daniel; Knipping, E. M.; Kumar, N.; Munger, J.; Carouge, C. C.; van Donkelaar, A.; Wang, Y. X.; Chen, D.
    We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol) and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy) show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.
  • Thumbnail Image
    Publication
    Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis
    (Wiley Blackwell (Blackwell Publishing), 2012) Richardson, Andrew; Anderson, Ryan S.; Arain, M. Altaf; Barr, Alan G.; Bohrer, Gil; Chen, Guangsheng; Chen, Jing M.; Ciais, Philippe; Davis, Kenneth J.; Desai, Ankur R.; Dietze, Michael C.; Dragoni, Danilo; Garrity, Steven R.; Gough, Christopher M.; Grant, Robert; Hollinger, David Y.; Margolis, Hank A.; McCaughey, Harry; Migliavacca, Mirco; Monson, Russell K.; Munger, J.; Poulter, Benjamin; Raczka, Brett M.; Ricciuto, Daniel M.; Sahoo, Alok K.; Schaefer, Kevin; Tian, Hanqin; Vargas, Rodrigo; Verbeeck, Hans; Xiao, Jingfeng; Xue, Yongkang
    Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem-scale CO2 exchange, in 14 models participating in the North American Carbon Program Site Synthesis. Model predictions were evaluated using long-term measurements (emphasizing the period 2000-2006) from 10 forested sites within the AmeriFlux and Fluxnet-Canada networks. In deciduous forests, almost all models consistently predicted that the growing season started earlier, and ended later, than was actually observed; biases of 2 weeks or more were typical. For these sites, most models were also unable to explain more than a small fraction of the observed interannual variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of the seasonal cycle resulted in over-prediction of gross ecosystem photosynthesis by +160 ± 145 g C m-2 y-1 during the spring transition period, and +75 ± 130 g C m-2 y-1 during the autumn transition period (13% and 8% annual productivity, respectively) compensating for the tendency of most models to under-predict the magnitude of peak summertime photosynthetic rates. Models did a better job of predicting the seasonality of CO2 exchange for evergreen forests. These results highlight the need for improved understanding of the environmental controls on vegetation phenology, and incorporation of this knowledge into better phenological models. Existing models are unlikely to predict future responses of phenology to climate change accurately, and therefore will misrepresent the seasonality and interannual variability of key biosphere-atmosphere feedbacks and interactions in coupled global climate models.
  • Thumbnail Image
    Publication
    Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability
    (Proceedings of the National Academy of Sciences, 2010) Medvigy, D.; Wofsy, Steven; Munger, J.; Moorcroft, Paul
    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning.
  • Thumbnail Image
    Publication
    A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data
    (Elsevier BV, 2010) Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew; Wharton, Sonia; Ma, Siyan; Martini, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J.; Noormets, Asko; Oechel, Walter C.; Paw U, Kyaw Tha; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven
    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000–2004, and was validated using observed GPP over the period 2005–2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km × 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr− 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances.
  • Thumbnail Image
    Publication
    Transport and oxidation of SO2 in a stagnant foggy valley
    (Elsevier BV, 1986) Jacob, Daniel; Shair, Frederick H.; Waldman, Jed M.; Munger, J.; Hoffmann, Michael R.
    The fate of SO2 emitted in the San Joaquin Valley of California under stagnant foggy conditions was determined by the release of an inert tracer and the concurrent monitoring of SO2 and SO42− concentrations. At night, SO2 was found to be trapped in a dense fog layer below a strong and persistent inversion based a few hundred meters above the valley floor. This lack of ventilation led to the accumulation of SO2 and SO42− over a major SO2 source region in the valley. The rate of oxidation of SO2 to SO42− in fog was estimated at 3 ± 2%h−1. Production of acidity from the oxidation of SO2 fully titrated the NH3(g) present before the fog, and led to a progressive drop of the fogwater pH over the course of the night. In the afternoon, the valley was found to be efficiently ventilated by a buoyant upslope flow through the inversion. The tracer data indicated that about 40 % of the air transported upslope in the afternoon was returned to the valley in the night-time drainage flow. The fates of SO2 and SO42− in the valley during extended highinversion episodes appear to depend considerably on the presence of fog or stratus, and on the extent of daytime insolation.
  • Thumbnail Image
    Publication
    Reactive nitrogen oxides and ozone above a taiga woodland
    (Wiley-Blackwell, 1994) Bakwin, Peter S.; Jacob, Daniel; Wofsy, Steven; Munger, J.; Daube, Bruce; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.; Blake, Donald R.
    Measurements of reactive nitrogen oxides (NOₓ and NO{sub y}) and ozone (O₃) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Arctic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O₃ were strongly modulated by the synoptic scale meteorology that brought air from various regions to the site. Industrial pollution from the Great Lakes region of the US and Canada appears to be a major source for periodic elevation of NOₓ, NO{sub y} and O₃. We find that NO/NO₂ ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NOₓ and O₃, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO₂, at the taiga site. Ratios of NOₓ to NO{sub y} were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO₃ from NO₂ due to high levels of biogenic hydrocarbons at the ABLE 3B site.
  • Thumbnail Image
    Publication
    Harvard Forest regional-scale air mass composition by Patterns in Atmospheric Transport History (PATH)
    (Wiley-Blackwell, 1998) Moody, J. L.; Munger, J.; Goldstein, A. H.; Jacob, Daniel; Wofsy, Steven
    We calculated 4 years (1990–1993) of back trajectories arriving at Harvard Forest and used them to define patterns in atmospheric transport history. This information was used to assess the degree to which regional-scale transport modulates the chemical composition of air masses sampled at Harvard Forest. Different seasonal signals in trace-gas concentration are derived for different flow patterns. Throughout the year, high-speed transport of cool, dry, cloud-free air from the north and northwest represents background conditions for the Harvard Forest site. These synoptic conditions describe the atmosphere after passage of a cold front. The most polluted conditions in each season occurred under SW flow, with warmer temperatures, higher water vapor mixing ratios, low mixed-layer depths at the site, and a higher frequency of cloudy conditions. These regional-scale air mass characteristics describe synoptic conditions of warm sector transport. In addition to average air mass characteristics, we have analyzed the covariation of species (e.g., O3 versus NOy-NOx; O3 versus CO) to address chemical processes based on transport history. For summer daytime measurements, we show that relatively fresh pollutants arrive in SW flow while the most aged air masses with higher O3 to NOz slopes arrive with W flow, suggesting a Midwestern contribution to regional high-oxidant episodes. These observations of patterns in chemical characteristics related to patterns in transport are corroborated with probability maps indicating the likelihood of transport from upwind regions using trajectories selected for chemical distribution end-members (10th and 90th percentiles).
  • Thumbnail Image
    Publication
    Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere
    (Wiley-Blackwell, 1998) Liang, Jinyou; Horowitz, Larry W.; Jacob, Daniel; Wang, Yuhang; Fiore, Arlene M.; Logan, Jennifer; Gardner, Geraldine M.; Munger, J.
    A three-dimensional, continental-scale photochemical model is used to investigate seasonal budgets of O3 and NOy species (including NOx and its oxidation products) in the boundary layer over the United States and to estimate the export of these species from the U.S. boundary layer to the global atmosphere. Model results are evaluated with year-round observations for O3, CO, and NOy species at nonurban sites. A seasonal transition from NOx to hydrocarbon-limited conditions for O3 production over the eastern United States is found to take place in the fall, with the reverse transition taking place in the spring. The mean NOx/NOy molar ratio in the U.S. boundary layer in the model ranges from 0.2 in summer to 0.6 in winter, in accord with observations, and reflecting largely the seasonal variation in the chemical lifetime of NOx. Formation of hydroxy organic nitrates during oxidation of isoprene, followed by decomposition of these nitrates to HNO3, is estimated to account for 30% of the chemical sink of NOx in the U.S. boundary layer in summer. Model results indicate that peroxyacylnitrates (PANs) are most abundant in the U.S. boundary layer in spring (25% of total NOy.), reflecting a combination of active photochemistry and low temperatures. About 20% of the NOx emitted from fossil fuel combustion in the United States in the model is exported out of the U.S. boundary layer as NOx or PANs (15% in summer, 25% in winter). This export responds less than proportionally to changes in NOx emissions in summer, but more than proportionally in winter. The annual mean export of NOx and PANs from the U.S. boundary layer is estimated to be 1.4 Tg N yr−1, representing an important source of NOx on the scale of the northern hemisphere troposphere. The eventual O3 production in the global troposphere due to the exported NOx and PANs is estimated to be twice as large, on an annual basis, as the direct export of O3 pollution from the U.S. boundary layer. Fossil fuel combustion in the United States is estimated to account for about 10% of the total source of O3 in the northern hemisphere troposphere on an annual basis.
  • Thumbnail Image
    Publication
    Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland
    (Wiley-Blackwell, 1999) Munger, J.; Jacob, Daniel; Fan, S.-M.; Colman, A. S.; Dibb, J. E.
    Concentrations and fluxes of NOy (total reactive nitrogen), ozone concentrations and fluxes of sensible heat, water vapor, and momentum were measured from May 1 to July 20, 1995 at Summit, Greenland. Median NOy concentrations declined from 947 ppt in May to 444 ppt by July. NOy fluxes were observed into and out of the snow, but the magnitudes were usually below 1 μmol m−2 h−1 because of the low HNO3 concentration and weak turbulence over the snow surface. Some of the highest observed fluxes may be due to temporary storage by equilibrium sorption of peroxyacetylnitrate (PAN) or other organic nitrogen species on ice surfaces in the upper snowpack. Sublimation of snow at the surface or during blowing snow events is associated with efflux of NOy from the snowpack. Because the NOy fluxes during summer at Summit are bidirectional and small in magnitude, the net result of turbulent NOy exchange is insignificant compared to the 2 μmol m−2 d−1 mean input from fresh snow during the summer months. If the arctic NOy reservoir is predominantly PAN (or compounds with similar properties), thermal dissociation of this NOy is sufficient to support the observed flux of nitrate in fresh snow. Very low HNO3 concentrations in the surface layer (1% of total NOy) reflect the poor ventilation of the surface layer over the snowpack combined with the relatively rapid uptake of HNO3 by fog, falling snow, and direct deposition to the snowpack.