Person:
Wu, Wenyi

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Wu

First Name

Wenyi

Name

Wu, Wenyi

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Introduction of the MDM2 T309G Mutation in Primary Human Retinal Epithelial Cells Enhances Experimental Proliferative Vitreoretinopathy
    (The Association for Research in Vision and Ophthalmology, 2017) Zhou, Guohong; Duan, Yajiang; Ma, Gaoen; Wu, Wenyi; Hu, Zhengping; Chen, Na; Chee, Yewlin; Cui, Jing; Samad, Arif; Matsubara, Joanne A.; Mukai, Shizuo; D'Amore, Patricia; Lei, Hetian
    Purpose The murine double minute (MDM)2 is a critical negative regulator of the p53 tumor suppressor, and MDM2 SNP309G is associated with a higher risk of proliferative vitreoretinopathy (PVR); in addition, the MDM2 T309G created using clustered regularly interspaced short palindromic repeats (CRISPR)/associated endonuclease (Cas)9 enhances normal rabbit vitreous-induced expression of MDM2 and survival of primary human retinal pigment epithelial (hRPE) cells in vitro. The goal of this study was to determine whether this MDM2 T309G contributes to the development of experimental PVR. Methods: hRPE cells expressing MDM2 T309G or T309T only were treated with vitreous from human PVR donors (HV). The expression of MDM2 and p53 in the treated cells was examined by Western blot. The in vitro vitreous-induced cellular responses, such as contraction were assessed, and PVR was induced by intravitreal injection of the hRPE cells with MDM2 T309G or T309T only into rabbit eyes. Results: Western blot analyses indicated that treatment of hRPE cells with HV led to a significant increase (1.7 ± 0.2-fold) in the expression of MDM2 and a significant decrease in p53 in the cells expressing MDM2 T309G compared with those with MDM2 T309T. In addition, HV promoted contraction of the hRPE cells expressing MDM2 T309G significantly more than those with MDM2 T309T only. Furthermore, MDM2 T309G in the hRPE cells enhanced the development of PVR in a rabbit model. Conclusions: The MDM2 SNP309 in RPE cells enhances their potential of PVR pathogenesis.
  • Thumbnail Image
    Publication
    Lysyl oxidase inhibition via β-aminoproprionitrile hampers human umbilical vein endothelial cell angiogenesis and migration in vitro
    (D.A. Spandidos, 2018) Shi, Lin; Zhang, Ning; Liu, Hetao; Zhao, Lei; Liu, Jing; Wan, Juan; Wu, Wenyi; Lei, Hetian; Liu, Rongqing; Han, Mei
    Lysyl oxidase (LOX) is an enzyme that oxidizes lysine residues in collagens and elastin. It stabilizes or remodels the extracellular matrix and basement membrane of blood vessels. Current oncology studies have revealed that LOX is upregulated in invasive cancer cells and bolstered cell movement, and LOX was observed to promote the angiogenesis and migration of endothelial cells. In the present study, angiogenesis and migration were examined in human umbilical vein endothelial cells (HUVECs). Following cell treatment with 0.1–0.4 mM β-aminoproprionitrile (BAPN), a specific inhibitor of LOX, angiogenesis was analyzed with a fibrin gel in vitro angiogenesis assay kit and migration was examined via a Boyden Chamber assay. Angiogenesis-associated gene expression was investigated with a microarray assay and confirmed with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results showed that HUVEC angiogenesis substantially increased in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and phorbol 12-myristate 13-acetate (PMA). In addition, LOX inhibition blocked the angiogenesis stimulated by VEGF bFGF and PMA, and the inhibition of LOX reduced the migration of HUVECs. Furthermore, the microarray and RT-qPCR revealed that BAPN downregulated myeloid progenitor inhibitory factor 1, and western blot analysis demonstrated that BAPN decreased the phosphorylation of MAPK and Akt, suggesting that the specific inhibitor of LOX, BAPN, may serve as an alternative strategy for preventing angiogenesis.
  • Thumbnail Image
    Publication
    Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation
    (The Association for Research in Vision and Ophthalmology, 2017) Huang, Xionggao; Zhou, Guohong; Wu, Wenyi; Ma, Gaoen; D'Amore, Patricia; Mukai, Shizuo; Lei, Hetian
    Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods: Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results: In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions: The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis.
  • Thumbnail Image
    Publication
    AAV-CRISPR/Cas9–Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro
    (The Association for Research in Vision and Ophthalmology, 2017) Wu, Wenyi; Duan, Yajian; Ma, Gaoen; Zhou, Guohong; Park-Windhol, Cindy; D'Amore, Patricia; Lei, Hetian
    Purpose Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)–mediated CRISPR (clustered regularly interspaced short palindromic repeats)–associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. Methods: The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. Results: AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. Conclusions: AAV-CRISRP/Cas9–mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.