Person:
Daheron, Laurence

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Daheron

First Name

Laurence

Name

Daheron, Laurence

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models
    (Elsevier BV, 2013) Ding, Qiurong; Lee, Youn-Kyoung; Schaefer, Esperance; Peters, Derek T.; Veres, Adrian; Kim, Kevin; Kuperwasser, Nicolas; Motola, Daniel L; Meissner, Torsten; Hendriks, William; Trevisan, Marta; Gupta, Rajat; Moisan, Annie; Banks, Eric; Friesen, Max; Schinzel, Robert T.; Xia, Fang; Tang, Alexander; Xia, Yulei; Figueroa, Emmanuel; Wann, Amy; Ahfeldt, Tim; Daheron, Laurence; Zhang, Feng; Rubin, Lee; Peng, Lee F; Chung, Raymond; Musunuru, Kiran; Cowan, Chad
    Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report here the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter for which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and hepatitis C infection. We found little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease.
  • Thumbnail Image
    Publication
    Characterization of Bipolar Disorder Patient-Specific Induced Pluripotent Stem Cells from a Family Reveals Neurodevelopmental and mRNA Expression Abnormalities
    (2014) Madison, Jon M.; Zhou, Fen; Nigam, Aparna; Hussain, Ali; Barker, Douglas D.; Nehme, Ralda; van der Ven, Karlijn; Hsu, Jenny; Wolf, Pavlina; Fleishman, Morgan; O’Dushlaine, Colm; Rose, Sam; Chambert, Kimberly; Lau, Frank H.; Ahfeldt, Tim; Rueckert, Erroll H.; Sheridan, Steven D.; Fass, Daniel M.; Nemesh, James; Mullen, Thomas E.; Daheron, Laurence; McCarroll, Steve; Sklar, Pamela; Perlis, Roy H.; Haggarty, Stephen
    Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared to their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4+ NPCs with a pharmacological inhibitor of glycogen synthase kinase 3 (GSK3), a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD-patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
  • Thumbnail Image
    Publication
    Identification of regions in the HOX cluster that can confer repression in a Polycomb-dependent manner
    (BioMed Central, 2013) Woo, Caroline J; Kharchenko, Peter; Daheron, Laurence; Park, Peter; Kingston, Robert