Person:
Baron, David

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Baron

First Name

David

Name

Baron, David

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Genetic modifiers of hypertension in soluble guanylate cyclase α1–deficient mice
    (American Society for Clinical Investigation, 2012) Buys, Emmanuel; Raher, Michael J.; Kirby, Andrew; Mohd, Shahid; Baron, David; Hayton, Sarah R.; Tainsh, Laurel T.; Sips, Patrick; Rauwerdink, Kristen M.; Yan, Qingshang; Tainsh, Robert; Shakartzi, Hannah R.; Stevens, Christine; Decaluwé, Kelly; Rodrigues-Machado, Maria da Gloria; Malhotra, Rajeev; Van de Voorde, Johan; Wang, Tong; Brouckaert, Peter; Daly, Mark; Bloch, Kenneth
    Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure–related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure–modifying mechanism in a setting of impaired NO/cGMP signaling.
  • Thumbnail Image
    Publication
    Brown Adipose Tissue Blood Flow and Mass in Obesity: A Contrast Ultrasound Study in Mice
    (Elsevier BV, 2013) Clerte, Maëva; Baron, David; Brouckaert, Peter; Ernande, Laura; Raher, Michael J.; Flynn, Aidan W.; Picard, Michael; Bloch, Kenneth; Buys, Emmanuel; Scherrer-Crosbie, Marielle
    Background: When activated by the sympathetic nervous system, brown adipose tissue (BAT) increases energy expenditure to produce heat. Augmenting BAT mass or increasing BAT activation could potentially be used to decrease obesity. Noninvasive methods to detect and monitor BAT mass are needed. Contrast ultrasound can estimate BAT blood flow and is able to measure the perfused volume of an organ and thus its mass. The objective of this study was to evaluate whether contrast ultrasound could characterize BAT mass in two mouse models of obesity: wild-type mice fed a high-fat diet and mutant db/db mice. Methods: Contrast ultrasound of BAT (Definity 2 μL/min; 14-MHz linear probe) was performed before and after stimulation of BAT with norepinephrine (NE). BAT replenishment curves were obtained, and blood flow was estimated by the product of the curve’s plateau and slope. Additionally, consecutive two-dimensional images of perfused BAT were acquired at 1-mm intervals after stimulation with NE and used to assess BAT volume and mass. Results: BAT blood flow increased after NE infusion in all mice studied. Blood flow response to NE was similar in wild-type mice fed either a low-fat diet or a high-fat diet. BAT blood flow was lower in db/db mice than in wild-type mice (P = .02). Contrast ultrasound–derived BAT mass was correlated with BAT mass obtained at necropsy (R2 = 0.83, P < .001). BAT mass was higher in mice fed a high-fat diet than in those fed a low-fat diet. Conclusions: Contrast ultrasound can be used to estimate BAT mass in mice when BAT vascularization is not significantly impaired. This noninvasive technique may potentially allow the serial evaluation of therapies designed to augment BAT mass.