Person: Huynh, Michael
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Huynh
First Name
Michael
Name
Huynh, Michael
3 results
Search Results
Now showing 1 - 3 of 3
Publication Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes(American Chemical Society, 2014) Ullman, Andrew M.; Liu, Yi; Huynh, Michael; Bediako, D. Kwabena; Wang, Hongsen; Anderson, Bryce L.; Powers, David C.; Breen, John J.; Abruña, Héctor D.; Nocera, DanielThe observed water oxidation activity of the compound class Co4O4(OAc)4(Py–X)4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co4O4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials and demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.Publication Modulation of Phenol Oxidation in Cofacial Dyads(American Chemical Society (ACS), 2015) Koo, Bon Jun; Huynh, Michael; Halbach, Robert Leonard; Stubbe, JoAnne; Nocera, DanielThe presentation of two phenols on a xanthene backbone is akin to the tyrosine dyad (Y730 and Y731) of ribonucleotide reductase. X-ray crystallography reveals that the two phenol moieties are cofacially disposed at 4.35 Å. Cyclic voltammetry (CV) reveals that phenol oxidation is modulated within the dyad, which exhibits a splitting of one-electron waves with the second oxidation of the phenol dyad occurring at larger positive potential than that of a typical phenol. In contrast, a single phenol appended to a xanthene exhibits a two-electron (ECE) process, consistent with reported oxidation pathways of phenols in acetonitrile. The perturbation of the phenol potential by stacking is reminiscent of a similar effect for guanines stacked within DNA base pairs.Publication Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid(Royal Society of Chemistry (RSC), 2017) Huynh, Michael; Ozel, Tuncay; Liu, Chong; Lau, Eric C.; Nocera, DanielOxygen evolution reaction (OER) catalysts that are earth-abundant and are active and stable in acid are unknown. Active catalysts derived from Co and Ni oxides dissolve at low pH, whereas acid stable systems such as Mn oxides (MnOx) display poor OER activity. We now demonstrate a rational approach for the design of earth-abundant catalysts that are stable and active in acid by treating activity and stability as decoupled elements of mixed metal oxides. Manganese serves as a stabilizing structural element for catalytically active Co centers in CoMnOx films. In acidic solutions (pH 2.5), CoMnOx exhibits the OER activity of electrodeposited Co oxide (CoOx) with a Tafel slope of 70–80 mV/decade while also retaining the long-term acid stability of MnOx films for OER at 0.1 mA/cm2. Driving OER at greater current densities in this system is not viable because at high anodic potentials, Mn oxides convert to and dissolve as permanganate. However, by exploiting the decoupled design of the catalyst, the stabilizing structural element may be optimized independently of the Co active sites. By screening potential–pH diagrams, we replaced Mn with Pb to prepare CoFePbOx films that maintained the high OER activity of CoOx at pH 2.5 while exhibiting long-term acid stability at higher current densities (at 1 mA/cm2 for over 50 h at pH 2.0). Under these acidic conditions, CoFePbOx exhibits OER activity that approaches noble metal oxides, thus establishing the viability of decoupling functionality in mixed metal catalysts for designing active, acid-stable, and earth-abundant OER catalysts.