Person: Sanders, Jon G.
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sanders
First Name
Jon G.
Name
Sanders, Jon G.
4 results
Search Results
Now showing 1 - 4 of 4
Publication Animals in a Bacterial World, A New Imperative for the Life Sciences(Proceedings of the National Academy of Sciences, 2013) McFall-Ngai, M.; Hadfield, M. G.; Bosch, T. C. G.; Carey, H. V.; Domazet-Loso, T.; Douglas, A. E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S. F.; Hentschel, U.; King, N.; Kjelleberg, S.; Knoll, Andrew; Kremer, N.; Mazmanian, S. K.; Metcalf, J. L.; Nealson, K.; Pierce, Naomi; Rawls, J. F.; Reid, A.; Ruby, E. G.; Rumpho, M.; Sanders, Jon G.; Tautz, D.; Wernegreen, J. J.In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.Publication DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure(BlackWell Publishing Ltd, 2014) Rubin, Benjamin E R; Sanders, Jon G.; Hampton-Marcell, Jarrad; Owens, Sarah M; Gilbert, Jack A; Moreau, Corrie SThe recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.Publication Evidence for the Role of Endosymbionts in Regional-Scale Habitat Partitioning by Hydrothermal Vent Symbioses(Proceedings of the National Academy of Sciences, 2012) Beinart, Roxanne Abra; Sanders, Jon G.; Faure, Baptiste; Sylva, Sean P.; Lee, Raymond W.; Becker, Erin L.; Gartman, Amy; Luther, George W.; Seewald, Jeffrey S.; Fisher, Charles R.; Girguis, PeterDeep-sea hydrothermal vents are populated by dense communities of animals that form symbiotic associations with chemolithoautotrophic bacteria. To date, our understanding of which factors govern the distribution of host/symbiont associations (or holobionts) in nature is limited, although host physiology often is invoked. In general, the role that symbionts play in habitat utilization by vent holobionts has not been thoroughly addressed. Here we present evidence for symbiont-influenced, regional-scale niche partitioning among symbiotic gastropods (genus Alviniconcha) in the Lau Basin. We extensively surveyed Alviniconcha holobionts from four vent fields using quantitative molecular approaches, coupled to characterization of high-temperature and diffuse vent-fluid composition using gastight samplers and in situ electrochemical analyses, respectively. Phylogenetic analyses exposed cryptic host and symbiont diversity, revealing three distinct host types and three different symbiont phylotypes (one ε-proteobacteria and two γ-proteobacteria) that formed specific associations with one another. Strikingly, we observed that holobionts with ε-proteobacterial symbionts were dominant at the northern fields, whereas holobionts with γ-proteobacterial symbionts were dominant in the southern fields. This pattern of distribution corresponds to differences in the vent geochemistry that result from deep subsurface geological and geothermal processes. We posit that the symbionts, likely through differences in chemolithoautotrophic metabolism, influence niche utilization among these holobionts. The data presented here represent evidence linking symbiont type to habitat partitioning among the chemosynthetic symbioses at hydrothermal vents and illustrate the coupling between subsurface geothermal processes and niche availability.Publication Disentangling the Coevolutionary Histories of Animal Gut Microbiomes(2015-05-17) Sanders, Jon G.; Pierce, Naomi E.; Girguis, Peter R.; Knoll, Andrew H.; Alm, EricAnimals associate with microbes in complex interactions with profound fitness consequences. These interactions play an enormous role in the evolution of both partners, and recent advances in sequencing technology have allowed for unprecedented insight into the diversity and distribution of these associations. However, our understanding of the processes generating those patterns remains in its infancy. Here, I explore variation in microbiomes across two animal lineages—ants and mammals—to tease apart the role of these process in the evolution of gut microbiota. First, I explore patterns of phylogenetic correlation in gut microbiota of herbivorous Cephalotes ants and hominid apes. By examining the sensitivity of phylogenetic correlation to analytical parameters, I show that these outwardly similar patterns are likely to be the result of very different processes in each host lineage. Next, I examine in more depth the interacting effects of diet and phylogeny on the structure of baleen whale microbiomes. Whales consume a diet that differs dramatically from that of their closest extant relatives, the herbivorous artiodactyls. I use a combination of marker gene and shotgun metagenomic sequencing to show that a phylogentically conserved host trait, the multichambered gut, leads to functional and taxonomic similarities of whale gut microbiomes to those of their herbivorous ancestors via the fermentation of animal polysaccharides in the exoskeletons of their prey. Finally, I return to ants to examine how major shifts in the nature of gut microbial association correspond to host ecology. Using measures of absolute bacterial abundance, rather than diversity, I test the hypothesis that evolution of symbiosis with microbes has facilitated ants’ dominance of tropical rainforest canopies. Surprisingly, I find differences in the abundance of gut bacteria in different ant lineages that span many orders of magnitude, suggesting that evolutionary transitions in the functional role of symbiosis in this animal lineage correspond not only to changes in the diversity of these associations, but to changes in kind. The results of these studies help to clarify the roles of history and selection in structuring animal gut microbiota, hinting that the interaction of these factors may fundamentally differ between animal lineages.