Person:
Hanken, James

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hanken

First Name

James

Name

Hanken, James

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Publication
    Evolution of the head-trunk interface in tetrapod vertebrates
    (eLife Sciences Publications, Ltd, 2016) Sefton, Elizabeth M; Bhullar, Bhart-Anjan S; Mohaddes, Zahra; Hanken, James
    Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes. DOI: http://dx.doi.org/10.7554/eLife.09972.001
  • Thumbnail Image
    Publication
    From Clinging to Digging: The Postembryonic Skeletal Ontogeny of the Indian Purple Frog, Nasikabatrachus sahyadrensis (Anura: Nasikabatrachidae)
    (Public Library of Science, 2016) Senevirathne, Gayani; Thomas, Ashish; Kerney, Ryan; Hanken, James; Biju, S. D.; Meegaskumbura, Madhava
    The Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and postcranial skeleton, are unknown. Using a nearly complete metamorphic series from free-living larva to metamorph, we describe the postembryonic skeletal ontogeny of this ancient and unique monotypic lineage. The torrent-dwelling larva possesses a dorsoventrally flattened body and a head with tiny dorsal eyes, robust lower and upper jaw cartilages, well-developed trabecular horns, and a definable gap between the trabecular horns and the tip of the snout. Unlike tadpoles of many other frogs, those of Nasikabatrachus retain larval mouthparts into late metamorphic stages. This unusual feature enables the larvae to maintain their clinging habit until near the end of metamorphosis. The subsequent ontogenetic shift from clinging to digging is correlated with rapid morphological changes and behavioral modifications. Metamorphs are equipped with a shortened tibiafibula and ossified prehallical elements, which likely facilitate initial digging using the hind limbs. Subsequently, the frogs may shift to headfirst burrowing by using the wedge-shaped skull, anteriorly positioned pectoral girdle, well-developed humeral crests and spatula-shaped forelimbs. The transition from an aquatic life in torrents to a terrestrial life underground entails dramatic changes in skeletal morphology and function that represent an extreme in metamorphic remodeling. Our analysis enhances the scope for detailed comparative studies across anurans, a group renowned for the diversity of its life history strategies.
  • Thumbnail Image
    Publication
    Semantic Annotation of Mutable Data
    (Public Library of Science, 2013) Morris, Robert; Dou, Lei; Hanken, James; Kelly, Maureen; Lowery, David B.; Ludäscher, Bertram; Macklin, James A.; Morris, Paul
    Electronic annotation of scientific data is very similar to annotation of documents. Both types of annotation amplify the original object, add related knowledge to it, and dispute or support assertions in it. In each case, annotation is a framework for discourse about the original object, and, in each case, an annotation needs to clearly identify its scope and its own terminology. However, electronic annotation of data differs from annotation of documents: the content of the annotations, including expectations and supporting evidence, is more often shared among members of networks. Any consequent actions taken by the holders of the annotated data could be shared as well. But even those current annotation systems that admit data as their subject often make it difficult or impossible to annotate at fine-enough granularity to use the results in this way for data quality control. We address these kinds of issues by offering simple extensions to an existing annotation ontology and describe how the results support an interest-based distribution of annotations. We are using the result to design and deploy a platform that supports annotation services overlaid on networks of distributed data, with particular application to data quality control. Our initial instance supports a set of natural science collection metadata services. An important application is the support for data quality control and provision of missing data. A previous proof of concept demonstrated such use based on data annotations modeled with XML-Schema.
  • Thumbnail Image
    Publication
    Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull
    (Nature Publishing Group, 2014) Piekarski, Nadine; Gross, Joshua B.; Hanken, James
    Development of the vertebrate skull has been studied intensively for more than 150 years, yet many essential features remain unresolved. One such feature is the extent to which embryonic derivation of individual bones is evolutionarily conserved or labile. We perform long-term fate mapping using GFP-transgenic axolotl and Xenopus laevis to document the contribution of individual cranial neural crest streams to the osteocranium in these amphibians. Here we show that the axolotl pattern is strikingly similar to that in amniotes; it likely represents the ancestral condition for tetrapods. Unexpectedly, the pattern in Xenopus is much different; it may constitute a unique condition that evolved after anurans diverged from other amphibians. Such changes reveal an unappreciated relation between life history evolution and cranial development and exemplify ‘developmental system drift’, in which interspecific divergence in developmental processes that underlie homologous characters occurs with little or no concomitant change in the adult phenotype.
  • Thumbnail Image
    Publication
    Convergent evolutionary reduction of atrial septation in lungless salamanders
    (Wiley-Blackwell, 2016) Lewis, Zachary R.; Hanken, James
    Nearly two thirds of the approximately 700 species of living salamanders are lungless. These species respire entirely through the skin and buccopharyngeal mucosa. Lung loss dramatically impacts the configuration of the circulatory system but the effects of evolutionary lung loss on cardiac morphology have long been controversial. For example, there is presumably little need for an atrial septum in lungless salamanders due to the absence of pulmonary veins and the presence of a single source of mixed blood flowing into the heart, but whether lungless salamanders possess an atrial septum and whether the sinoatrial aperture is located in the left or right atrium are unresolved; authors have stated opposing claims since the late 1800s. Here, we use microcomputed tomography (l-CT) imaging, gross dissection and histological reconstruction to compare cardiac morphology among lungless plethodontid salamanders (Plethodontidae), salamanders with lungs, and the convergently lungless species Onychodactylus japonicus (Hynobiidae). Plethodontid salamanders have partial atrial septa and incomplete separation of the atrium into left and right halves. Partial septation is also seen in O. japonicus. Hence, lungless salamanders from two lineages convergently evolved similar morphology of the atrial septum. The partial septum in lungless salamanders can make it appear that the sinoatrial aperture is in the left atrium, but this interpretation is incorrect. Outgroup comparisons demonstrate that the aperture is located in a posterodorsal extension of the right atrium into the left side of the heart. Independent evolutionary losses of the atrial septum may have a similar developmental basis. In mammals, the lungs induce formation of the atrial septum by secreting morphogens to neighboring mesenchyme. We hypothesize that the lungs induce atrial septum development in amphibians in a similar fashion to mammals, and that atrial septum reduction in lungless salamanders is a direct result of lunglessness.
  • Thumbnail Image
    Publication
    Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico
    (PeerJ Inc., 2016) Parra-Olea, Gabriela; Rovito, Sean M.; García-París, Mario; Maisano, Jessica A.; Wake, David B.; Hanken, James
    We describe three new species of minute salamanders, genus Thorius, from the Sierra Madre del Sur of Oaxaca, Mexico. Until now only a single species, T. minutissimus, has been reported from this region, although molecular data have long shown extensive genetic differentiation among geographically disjunct populations. Adult Thorius pinicola sp. nov., T. longicaudus sp. nov., and T. tlaxiacus sp. nov. are larger than T. minutissimus and possess elliptical rather than oval nostrils; T. pinicola and T. longicaudus also have longer tails. All three new species occur west of the range of T. minutissimus, which has the easternmost distribution of any member of the genus. The new species are distinguished from each other and from other named Thorius in Oaxaca by a combination of adult body size, external morphology and osteology, and by protein characters (allozymes) and differences in DNA sequences. In addition, we redescribe T. minutissimus and a related species, T. narisovalis, to further clarify the taxonomic status of Oaxacan populations and to facilitate future studies of the remaining genetically differentiated Thorius that cannot be satisfactorily assigned to any named species. Populations of all five species considered here appear to have declined dramatically over the last one or two decades and live specimens are difficult to find in nature. Thorius may be the most endangered genus of amphibians in the world. All species may go extinct before the end of this century.
  • Thumbnail Image
    Publication
    Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis
    (The Royal Society, 2016) Maddin, Hillary C.; Piekarski, Nadine; Sefton, Elizabeth M.; Hanken, James
    Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC–mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC–mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.
  • Thumbnail Image
    Publication
    Terrestrialization, Miniaturization and Rates of Diversification in African Puddle Frogs (Anura: Phrynobatrachidae)
    (Public Library of Science, 2012) Zimkus, Breda; Lawson, Lucinda; Loader, Simon P.; Hanken, James
    Terrestrialization, the evolution of non-aquatic oviposition, and miniaturization, the evolution of tiny adult body size, are recurring trends in amphibian evolution, but the relationships among the traits that characterize these phenomena are not well understood. Furthermore, these traits have been identified as possible “key innovations” that are predicted to increase rates of speciation in those lineages in which they evolve. We examine terrestrialization and miniaturization in sub-Saharan puddle frogs (Phrynobatrachidae) in a phylogenetic context to investigate the relationship between adaptation and diversification through time. We use relative dating techniques to ascertain if character trait shifts are associated with increased diversification rates, and we evaluate the likelihood that a single temporal event can explain the evolution of those traits. Results indicate alternate reproductive modes evolved independently in Phrynobatrachus at least seven times, including terrestrial deposition of eggs and terrestrial, non-feeding larvae. These shifts towards alternate reproductive modes are not linked to a common temporal event. Contrary to the “key innovations” hypothesis, clades that exhibit alternate reproductive modes have lower diversification rates than those that deposit eggs aquatically. Adult habitat, pedal webbing and body size have no effect on diversification rates. Though these traits putatively identified as key innovations for Phrynobatrachus do not seem to be associated with increased speciation rates, they may still provide opportunities to extend into new niches, thus increasing overall diversity.
  • Thumbnail Image
    Publication
    Forelimb-Hindlimb Developmental Timing Changes across Tetrapod Phylogeny
    (BioMed Central, 2007) Bininda-Emonds, Olaf RP; Jeffery, Jonathan E; Sánchez-Villagra, Marcelo R; Colbert, Matthew; Pieau, Claude; Selwood, Lynne; ten Cate, Carel; Raynaud, Albert; Osabutey, Casmile K; Hanken, James; Richardson, Michael K.
    Background: Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results: An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion: Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in chondrogenetic patterns may serve as useful phylogenetic characters at higher taxonomic levels in tetrapods. Our results highlight the more important role generally played by allometric heterochrony in this instance to shape adult morphology.
  • Thumbnail Image
    Publication
    Concealed weapons: Erectile claws in African frogs
    (Royal Society Publishing, 2008) Blackburn, David C.; Hanken, James; Jenkins, Farish
    Vertebrate claws are used in a variety of important behaviours and are typically composed of a keratinous sheath overlying the terminal phalanx of a digit. Keratinous claws, however, are rare in living amphibians; their microstructure and other features indicate that they probably originated independently from those in amniotes. Here we show that certain African frogs have a different type of claw, used in defence, that is unique in design among living vertebrates and lacks a keratinous covering. These frogs have sectorial terminal phalanges on their hind feet that become functional by cutting through the skin. In the resting state, the phalanx is subdermal and attached to a distal bony nodule, a neomorphic skeletal element, via collagen-rich connective tissue. When erected, the claw breaks free from the nodule and pierces the ventral skin. The nodule, suspended by a sheath attached to the terminal phalanx and supported by collagenous connections to the dermis, remains fixed in place. While superficially resembling the shape of claws in other tetrapods, these are the only vertebrate claws known to pierce their way to functionality.