Person:
Fusaro, Vincent Alfred

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Fusaro

First Name

Vincent Alfred

Name

Fusaro, Vincent Alfred

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Publication
    Development of a Scalable Pharmacogenomic Clinical Decision Support Service
    (American Medical Informatics Association, 2013) Fusaro, Vincent Alfred; Brownstein, Catherine; Wolf, Wendy; Clinton, Catherine; Savage, Sarah; Mandl, Kenneth; Margulies, David; Manzi, Shannon
    Advances in sequencing technology are making genomic data more accessible within the healthcare environment. Published pharmacogenetic guidelines attempt to provide a clinical context for specific genomic variants; however, the actual implementation to convert genomic data into a clinical report integrated within an electronic medical record system is a major challenge for any hospital. We created a two-part solution that integrates with the medical record system and converts genetic variant results into an interpreted clinical report based on published guidelines. We successfully developed a scalable infrastructure to support TPMT genetic testing and are currently testing approximately two individuals per week in our production version. We plan to release an online variant to clinical interpretation reporting system in order to facilitate translation of pharmacogenetic information into clinical practice.
  • Thumbnail Image
    Publication
    The Potential of Accelerating Early Detection of Autism through Content Analysis of YouTube Videos
    (Public Library of Science, 2014) Fusaro, Vincent Alfred; Daniels, Jena; Duda, Marlena; DeLuca, Todd F.; D’Angelo, Olivia; Tamburello, Jenna; Maniscalco, James; Wall, Dennis P.
    Abstract Autism is on the rise, with 1 in 88 children receiving a diagnosis in the United States, yet the process for diagnosis remains cumbersome and time consuming. Research has shown that home videos of children can help increase the accuracy of diagnosis. However the use of videos in the diagnostic process is uncommon. In the present study, we assessed the feasibility of applying a gold-standard diagnostic instrument to brief and unstructured home videos and tested whether video analysis can enable more rapid detection of the core features of autism outside of clinical environments. We collected 100 public videos from YouTube of children ages 1–15 with either a self-reported diagnosis of an ASD (N = 45) or not (N = 55). Four non-clinical raters independently scored all videos using one of the most widely adopted tools for behavioral diagnosis of autism, the Autism Diagnostic Observation Schedule-Generic (ADOS). The classification accuracy was 96.8%, with 94.1% sensitivity and 100% specificity, the inter-rater correlation for the behavioral domains on the ADOS was 0.88, and the diagnoses matched a trained clinician in all but 3 of 22 randomly selected video cases. Despite the diversity of videos and non-clinical raters, our results indicate that it is possible to achieve high classification accuracy, sensitivity, and specificity as well as clinically acceptable inter-rater reliability with nonclinical personnel. Our results also demonstrate the potential for video-based detection of autism in short, unstructured home videos and further suggests that at least a percentage of the effort associated with detection and monitoring of autism may be mobilized and moved outside of traditional clinical environments.
  • Thumbnail Image
    Publication
    Early Detection of Poor Adherers to Statins: Applying Individualized Surveillance to Pay for Performance
    (Public Library of Science, 2013) Zimolzak, Andrew; Spettell, Claire M.; Fernandes, Joaquim; Fusaro, Vincent Alfred; Palmer, Nathan; Saria, Suchi; Kohane, Isaac; Jonikas, Magdalena Anna; Mandl, Kenneth
    Background: Medication nonadherence costs $300 billion annually in the US. Medicare Advantage plans have a financial incentive to increase medication adherence among members because the Centers for Medicare and Medicaid Services (CMS) now awards substantive bonus payments to such plans, based in part on population adherence to chronic medications. We sought to build an individualized surveillance model that detects early which beneficiaries will fall below the CMS adherence threshold. Methods: This was a retrospective study of over 210,000 beneficiaries initiating statins, in a database of private insurance claims, from 2008-2011. A logistic regression model was constructed to use statin adherence from initiation to day 90 to predict beneficiaries who would not meet the CMS measure of proportion of days covered 0.8 or above, from day 91 to 365. The model controlled for 15 additional characteristics. In a sensitivity analysis, we varied the number of days of adherence data used for prediction. Results: Lower adherence in the first 90 days was the strongest predictor of one-year nonadherence, with an odds ratio of 25.0 (95% confidence interval 23.7-26.5) for poor adherence at one year. The model had an area under the receiver operating characteristic curve of 0.80. Sensitivity analysis revealed that predictions of comparable accuracy could be made only 40 days after statin initiation. When members with 30-day supplies for their first statin fill had predictions made at 40 days, and members with 90-day supplies for their first fill had predictions made at 100 days, poor adherence could be predicted with 86% positive predictive value. Conclusions: To preserve their Medicare Star ratings, plan managers should identify or develop effective programs to improve adherence. An individualized surveillance approach can be used to target members who would most benefit, recognizing the tradeoff between improved model performance over time and the advantage of earlier detection.
  • Thumbnail Image
    Publication
    Use of Machine Learning to Shorten Observation-based Screening and Diagnosis of Autism
    (Nature Publishing Group, 2012) Wall, Dennis Paul; Kosmicki, Jack; DeLuca, Todd; Harstad, Elizabeth; Fusaro, Vincent Alfred
    The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization—in particular those focused on assessment of short home videos of children—that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk.
  • Thumbnail Image
    Publication
    A Simulation Platform to Examine Heterogeneity Influence on Treatment
    (American Medical Informatics Association, 2012) Chi, Chih-Lin; Fusaro, Vincent Alfred; Patil, Prasad; Crawford, Matthew A.; Content, Charles F.; Tonellato, Peter
    Although a protocol aims to guide treatment management and optimize overall outcomes, the benefits and harms for each individual vary due to heterogeneity. Some protocols integrate clinical and genetic variation to provide treatment recommendation; it is not clear whether such integration is sufficient. If not, treatment outcomes may be sub-optimal for certain patient sub-populations. Unfortunately, running a clinical trial to examine such outcome responses is cost prohibitive and requires a significant amount of time to conduct the study. We propose a simulation approach to discover this knowledge from electronic medical records; a rapid method to reach this goal. We use the well-known drug warfarin as an example to examine whether patient characteristics, including race and the genes CYP2C9 and VKORC1, have been fully integrated into dosing protocols. The two genes mentioned above have been shown to be important in patient response to warfarin.
  • Thumbnail Image
    Publication
    Genotator: A Disease-Agnostic Tool for Genetic Annotation of Disease
    (BioMed Central, 2010) Wall, Dennis Paul; Pivovarov, Rimma; Tong, Mark; Jung, Jae-Yoon; Fusaro, Vincent Alfred; DeLuca, Todd; Tonellato, Peter
    Background: Disease-specific genetic information has been increasing at rapid rates as a consequence of recent improvements and massive cost reductions in sequencing technologies. Numerous systems designed to capture and organize this mounting sea of genetic data have emerged, but these resources differ dramatically in their disease coverage and genetic depth. With few exceptions, researchers must manually search a variety of sites to assemble a complete set of genetic evidence for a particular disease of interest, a process that is both time-consuming and error-prone. Methods: We designed a real-time aggregation tool that provides both comprehensive coverage and reliable gene-to-disease rankings for any disease. Our tool, called Genotator, automatically integrates data from 11 externally accessible clinical genetics resources and uses these data in a straightforward formula to rank genes in order of disease relevance. We tested the accuracy of coverage of Genotator in three separate diseases for which there exist specialty curated databases, Autism Spectrum Disorder, Parkinson's Disease, and Alzheimer Disease. Genotator is freely available at http://genotator.hms.harvard.edu. Results: Genotator demonstrated that most of the 11 selected databases contain unique information about the genetic composition of disease, with 2514 genes found in only one of the 11 databases. These findings confirm that the integration of these databases provides a more complete picture than would be possible from any one database alone. Genotator successfully identified at least 75% of the top ranked genes for all three of our use cases, including a 90% concordance with the top 40 ranked candidates for Alzheimer Disease. Conclusions: As a meta-query engine, Genotator provides high coverage of both historical genetic research as well as recent advances in the genetic understanding of specific diseases. As such, Genotator provides a real-time aggregation of ranked data that remains current with the pace of research in the disease fields. Genotator's algorithm appropriately transforms query terms to match the input requirements of each targeted databases and accurately resolves named synonyms to ensure full coverage of the genetic results with official nomenclature. Genotator generates an excel-style output that is consistent across disease queries and readily importable to other applications.
  • Thumbnail Image
    Publication
    Integration of a standardized pharmacogenomic platform for clinical decision support at Boston Children's Hospital
    (BioMed Central, 2012) Brownstein, Catherine; Fusaro, Vincent Alfred; Savage, Sarah; Clinton, Catherine; Mandl, Kenneth; Margulies, David; Wolf, Wendy; Manzi, Shannon
  • Thumbnail Image
    Publication
    Cloud Computing for Comparative Genomics
    (BioMed Central, 2010) Wall, Dennis Paul; Kudtarkar, Parul; Fusaro, Vincent Alfred; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter
    Background: Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results: We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions: The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.