Person:
Reinsberger, Claus

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Reinsberger

First Name

Claus

Name

Reinsberger, Claus

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy
    (Elsevier BV, 2010) Reinsberger, Claus; Tanaka, Naoaki; Cole, Andrew J.; Lee, Jong Woo; Dworetzky, Barbara; Bromfield, Edward B.; Hamiwka, Lorie; Bourgeois, Blaise; Golby, Alexandra; Madsen, Joseph; Stufflebeam, Steven
    To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery.
  • Thumbnail Image
    Publication
    Dissociated multimodal hubs and seizures in temporal lobe epilepsy
    (BlackWell Publishing Ltd, 2015) Douw, Linda; Desalvo, Matthew; Tanaka, Naoaki; Cole, Andrew; Liu, Hesheng; Reinsberger, Claus; Stufflebeam, Steven
    Objective: Brain connectivity at rest is altered in temporal lobe epilepsy (TLE), particularly in “hub” areas such as the posterior default mode network (DMN). Although both functional and anatomical connectivity are disturbed in TLE, the relationships between measures as well as to seizure frequency remain unclear. We aim to clarify these associations using connectivity measures specifically sensitive to hubs. Methods: Connectivity between 1000 cortical surface parcels was determined in 49 TLE patients and 23 controls with diffusion and resting-state functional magnetic resonance imaging. Two types of hub connectivity were investigated across multiple brain modules (the DMN, motor system, etcetera): (1) within-module connectivity (a measure of local importance that assesses a parcel's communication level within its own subnetwork) and (2) between-module connectivity (a measure that assesses connections across multiple modules). Results: In TLE patients, there was lower overall functional integrity of the DMN as well as an increase in posterior hub connections with other modules. Anatomical between-module connectivity was globally decreased. Higher DMN disintegration (DD) coincided with higher anatomical between-module connectivity, whereas both were associated with increased seizure frequency. DD related to seizure frequency through mediating effects of anatomical connectivity, but seizure frequency also correlated with anatomical connectivity through DD, indicating a complex interaction between multimodal networks and symptoms. Interpretation We provide evidence for dissociated anatomical and functional hub connectivity in TLE. Moreover, shifts in functional hub connections from within to outside the DMN, an overall loss of integrative anatomical communication, and the interaction between the two increase seizure frequency.
  • Thumbnail Image
    Publication
    Loss of Resting-State Posterior Cingulate Flexibility Is Associated with Memory Disturbance in Left Temporal Lobe Epilepsy
    (Public Library of Science, 2015) Douw, Linda; Leveroni, Catherine; Tanaka, Naoaki; Emerton, Britt C.; Cole, Andrew C.; Reinsberger, Claus; Stufflebeam, Steven
    The association between cognition and resting-state fMRI (rs-fMRI) has been the focus of many recent studies, most of which use stationary connectivity. The dynamics or flexibility of connectivity, however, may be seminal for understanding cognitive functioning. In temporal lobe epilepsy (TLE), stationary connectomic correlates of impaired memory have been reported mainly for the hippocampus and posterior cingulate cortex (PCC). We therefore investigate resting-state and task-based hippocampal and PCC flexibility in addition to stationary connectivity in left TLE (LTLE) patients. Sixteen LTLE patients were analyzed with respect to rs-fMRI and task-based fMRI (t-fMRI), and underwent clinical neuropsychological testing. Flexibility of connectivity was calculated using a sliding-window approach by determining the standard deviation of Fisher-transformed Pearson correlation coefficients over all windows. Stationary connectivity was also calculated. Disturbed memory was operationalized as having at least one memory subtest score equal to or below the 5th percentile compared to normative data. Lower PCC flexibility, particularly in the contralateral (i.e. right) hemisphere, was found in memory-disturbed LTLE patients, who had up to 22% less flexible connectivity. No significant group differences were found with respect to hippocampal flexibility, stationary connectivity during both rs-fMRI and t-fMRI, or flexibility during t-fMRI. Contralateral resting-state PCC flexibility was able to classify all but one patient with respect to their memory status (94% accuracy). Flexibility of the PCC during rest relates to memory functioning in LTLE patients. Loss of flexible connectivity to the rest of the brain originating from the PCC, particularly contralateral to the seizure focus, is able to discern memory disturbed patients from their preserved counterparts. This study indicates that the dynamics of resting-state connectivity are associated with cognitive status of LTLE patients, rather than stationary connectivity.