Person:
Qi, Jun

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Qi

First Name

Jun

Name

Qi, Jun

Search Results

Now showing 1 - 10 of 11
  • Publication
    Development and Preclinical Validation of a Novel Covalent Ubiquitin Receptor Rpn13 Degrader in Multiple Myeloma
    (Springer Science and Business Media LLC, 2019-04-08) Song, Yan; Wu, Lei; Ray, Arghya; Li, Deyao; Du, Ting; Qi, Jun; Chauhan, Dharminder; Park, Paul; Picaud, Sarah; Wimalasena, Virangika; Filippakopoulos, Panagis; Anderson, Kenneth
    Proteasome inhibition is an effective treatment for multiple myeloma (MM); however, targeting different components of the ubiquitin–proteasome system (UPS) remains elusive. Our RNA-interference studies identified proteasome-associated ubiquitin-receptor Rpn13 as a mediator of MM cell growth and survival. Here, we developed the first degrader of Rpn13, WL40, using a small-molecule-induced targeted protein degradation strategy to selectively degrade this component of the UPS. WL40 was synthesized by linking the Rpn13 covalent inhibitor RA190 with the cereblon (CRBN) binding ligand thalidomide. We show that WL40 binds to both Rpn13 and CRBN and triggers degradation of cellular Rpn13, and is therefore first-in-class in exploiting a covalent inhibitor for the development of degraders. Biochemical and cellular studies show that WL40-induced Rpn13 degradation is both CRBN E3 ligase- and Rpn13-dependent. Importantly, WL40 decreases viability in MM cell lines and patient MM cells, even those resistant to bortezomib. Mechanistically, WL40 interrupts Rpn13 function and activates caspase apoptotic cascade, ER stress response and p53/p21 signaling. In animal model studies, WL40 inhibits xenografted human MM cell growth and prolongs survival. Overall, our data show the development of the first UbR Rpn13 degrader with potent anti-MM activity, and provide proof of principle for the development of degraders targeting components of the UPS for therapeutic application.
  • Thumbnail Image
    Publication
    Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia
    (2014) Reynolds, Christine; Roderick, Justine E.; LaBelle, James L.; Bird, Gregory; Mathieu, Ronald; Bodaar, Kimberly; Colon, Diana; Pyati, Ujwal; Stevenson, Kristen E.; Qi, Jun; Harris, Marian; Silverman, Lewis; Sallan, Stephen; Bradner, James E; Neuberg, Donna; Look, A.; Walensky, Loren; Kelliher, Michelle A.; Gutierrez, Alejandro
    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with PTEN deletions and resultant PI3K-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment- resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T- ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes, and in 33% of bim homozygous mutants (P = 0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.
  • Thumbnail Image
    Publication
    Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4
    (2017) Dai, Xiangpeng; Gan, Wenjian; Li, Xiaoning; Wang, Shangqian; Zhang, Wei; Huang, Ling; Liu, Shengwu; Zhong, Qing; Guo, Jianping; Zhang, Jinfang; Chen, Ting; Shimizu, Kouhei; Beca, Francisco; Blattner, Mirjam; Vasudevan, Divya; Buckley, Dennis L.; Qi, Jun; Buser, Lorenz; Liu, Pengda; Inuzuka, Hiroyuki; Beck, Andrew; Wang, Liewei; Wild, Peter J.; Garraway, Levi; Rubin, Mark A.; Barbieri, Christopher E.; Wong, Kwok-Kin; Muthuswamy, Senthil; Huang, Jiaoti; Chen, Yu; Bradner, James E; Wei, Wenyi
    The bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations.
  • Thumbnail Image
    Publication
    Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma
    (Nature Publishing Group UK, 2018) Bolin, Sara; Borgenvik, Anna; Persson, Camilla U.; Sundström, Anders; Qi, Jun; Bradner, James E.; Weiss, William A.; Cho, Yoon-Jae; Weishaupt, Holger; Swartling, Fredrik J.
    Medulloblastoma (MB) is the most common malignant brain tumor in children. MYC genes are frequently amplified and correlate with poor prognosis in MB. BET bromodomains recognize acetylated lysine residues and often promote and maintain MYC transcription. Certain cyclin-dependent kinases (CDKs) are further known to support MYC stabilization in tumor cells. In this report, MB cells were suppressed by combined targeting of MYC expression and MYC stabilization using BET bromodomain inhibition and CDK2 inhibition, respectively. Such combination treatment worked synergistically and caused cell cycle arrest as well as massive apoptosis. Immediate transcriptional changes from this combined MYC blockade were found using RNA-Seq profiling and showed remarkable similarities to changes in MYC target gene expression when MYCN was turned off with doxycycline in our MYCN-inducible animal model for Group 3 MB. In addition, the combination treatment significantly prolonged survival as compared to single-agent therapy in orthotopically transplanted human Group 3 MB with MYC amplifications. Our data suggest that dual inhibition of CDK2 and BET bromodomains can be a novel treatment approach for suppressing MYC-driven cancer.
  • Thumbnail Image
    Publication
    Targeting STAT5 in Hematologic Malignancies through Inhibition of the Bromodomain and Extra-Terminal (BET) Bromodomain Protein BRD2
    (American Association for Cancer Research (AACR), 2014) Liu, Suhu; Walker, Sarah; Nelson, Erik; Cerulli, R.; Xiang, Michael; Toniolo, P. A.; Qi, Jun; Stone, Richard; Wadleigh, Martha; Bradner, James E; Frank, David
    The transcription factor signal STAT5 is constitutively activated in a wide range of leukemias and lymphomas, and drives the expression of genes necessary for proliferation, survival, and self-renewal. Thus, targeting STAT5 is an appealing therapeutic strategy for hematologic malignancies. Given the importance of bromodomain-containing proteins in transcriptional regulation, we considered the hypothesis that a pharmacologic bromodomain inhibitor could inhibit STAT5-dependent gene expression. We found that the small-molecule bromodomain and extra-terminal (BET) bromodomain inhibitor JQ1 decreases STAT5-dependent (but not STAT3-dependent) transcription of both heterologous reporter genes and endogenous STAT5 target genes. JQ1 reduces STAT5 function in leukemia and lymphoma cells with constitutive STAT5 activation, or inducibly activated by cytokine stimulation. Among the BET bromodomain subfamily of proteins, it seems that BRD2 is the critical mediator for STAT5 activity. In experimental models of acute T-cell lymphoblastic leukemias, where activated STAT5 contributes to leukemia cell survival, Brd2 knockdown or JQ1 treatment shows strong synergy with tyrosine kinase inhibitors (TKI) in inducing apoptosis in leukemia cells. In contrast, mononuclear cells isolated form umbilical cord blood, which is enriched in normal hematopoietic precursor cells, were unaffected by these combinations. These findings indicate a unique functional association between BRD2 and STAT5, and suggest that combinations of JQ1 and TKIs may be an important rational strategy for treating leukemias and lymphomas driven by constitutive STAT5 activation.
  • Thumbnail Image
    Publication
    An oncogenic Ezh2 mutation cooperates with particular genetic alterations to induce tumors in mice and redistributes H3K27 trimethylation throughout the genome
    (2016) Souroullas, George P.; Jeck, William R.; Parker, Joel S.; Simon, Jeremy M.; Liu, Jie-Yu; Paulk, Joshiawa; Xiong, Jessie; Clark, Kelly S.; Fedoriw, Yuri; Qi, Jun; Burd, Christin E.; Bradner, James E; Sharpless, Norman E.
    B-cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 histone methyltransferase, but the carcinogenic role of these mutations is unclear. Here we describe a mouse model in which the most common somatic EZH2 gain-of-function mutation (Y646F in human, Y641F in the mouse) can be conditionally expressed. Expression of Ezh2Y641F in mouse B-cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. Bcl2 overexpression or p53 loss, but not c-Myc overexpression, further accelerated lymphoma progression, and expression of mutant B-Raf but not mutant N-Ras further accelerated melanoma progression. Although expression of Ezh2Y641F increased abundance of global H3K27 trimethylation (H3K27me3), it also caused a widespread redistribution of this repressive mark, including a loss of H3K27me3 associated with increased transcription at many loci. These results suggest that Ezh2Y641F induces lymphoma and melanoma through a vast reorganization of chromatin structure inducing both repression and activation of polycomb-regulated loci.
  • Thumbnail Image
    Publication
    Gene expression profiling of patient‐derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts
    (John Wiley and Sons Inc., 2017) Bian, Benjamin; Bigonnet, Martin; Gayet, Odile; Loncle, Celine; Maignan, Aurélie; Gilabert, Marine; Moutardier, Vincent; Garcia, Stephane; Turrini, Olivier; Delpero, Jean‐Robert; Giovannini, Marc; Grandval, Philippe; Gasmi, Mohamed; Ouaissi, Mehdi; Secq, Veronique; Poizat, Flora; Nicolle, Rémy; Blum, Yuna; Marisa, Laetitia; Rubis, Marion; Raoul, Jean‐Luc; Bradner, James E; Qi, Jun; Lomberk, Gwen; Urrutia, Raul; Saul, Andres; Dusetti, Nelson; Iovanna, Juan
    Abstract c‐MYC controls more than 15% of genes responsible for proliferation, differentiation, and cellular metabolism in pancreatic as well as other cancers making this transcription factor a prime target for treating patients. The transcriptome of 55 patient‐derived xenografts show that 30% of them share an exacerbated expression profile of MYC transcriptional targets (MYC‐high). This cohort is characterized by a high level of Ki67 staining, a lower differentiation state, and a shorter survival time compared to the MYC‐low subgroup. To define classifier expression signature, we selected a group of 10 MYC target transcripts which expression is increased in the MYC‐high group and six transcripts increased in the MYC‐low group. We validated the ability of these markers panel to identify MYC‐high patient‐derived xenografts from both: discovery and validation cohorts as well as primary cell cultures from the same patients. We then showed that cells from MYC‐high patients are more sensitive to JQ1 treatment compared to MYC‐low cells, in monolayer, 3D cultured spheroids and in vivo xenografted tumors, due to cell cycle arrest followed by apoptosis. Therefore, these results provide new markers and potentially novel therapeutic modalities for distinct subgroups of pancreatic tumors and may find application to the future management of these patients within the setting of individualized medicine clinics.
  • Thumbnail Image
    Publication
    Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6
    (Oxford University Press, 2015) Hu, Yu-Jie; Belaghzal, Houda; Hsiao, Wen-Yu; Qi, Jun; Bradner, James E; Guertin, David A.; Sif, Saïd; Imbalzano, Anthony N.
    Jumonji domain-containing protein 6 (JMJD6) is a nuclear protein involved in histone modification, transcription and RNA processing. Although JMJD6 is crucial for tissue development, the link between its molecular functions and its roles in any given differentiation process is unknown. We report that JMJD6 is required for adipogenic gene expression and differentiation in a manner independent of Jumonji C domain catalytic activity. JMJD6 knockdown led to a reduction of C/EBPβ and C/EBPδ protein expression without affecting mRNA levels in the early phase of differentiation. However, ectopic expression of C/EBPβ and C/EBPδ did not rescue differentiation. Further analysis demonstrated that JMJD6 was associated with the Pparγ2 and Cebpα loci and putative enhancers. JMJD6 was previously found associated with bromodomain and extra-terminal domain (BET) proteins, which can be targeted by the bromodomain inhibitor JQ1. JQ1 treatment prevented chromatin binding of JMJD6, Pparγ2 and Cebpα expression, and adipogenic differentiation, yet had no effect on C/EBPβ and C/EBPδ expression or chromatin binding. These results indicate dual roles for JMJD6 in promoting adipogenic gene expression program by post-transcriptional regulation of C/EBPβ and C/EBPδ and direct transcriptional activation of Pparγ2 and Cebpα during adipocyte differentiation.
  • Thumbnail Image
    Publication
    HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer
    (Impact Journals LLC, 2017) Hideshima, Teru; Mazitschek, Ralph; Qi, Jun; Mimura, Naoya; Tseng, Jen-Chieh; Kung, Andrew L.; Bradner, James E; Anderson, Kenneth
    We have shown that WT-161, a histone deacetylase 6 (HDAC6) inhibitor, shows remarkable anti-tumor activity in multiple myeloma (MM) in preclinical models. However, its activity in other type of cancers has not yet been shown. In this study, we further evaluated the biologic sequelae of WT161 in breast cancer cell lines. WT161 triggers apoptotic cell death in MCF7, T47D, BT474, and MDA-MB231 cells, associated with decreased expression of EGFR, HER2, and ERα and downstream signaling. However, HDAC6 knockdown shows that cytotoxicity and destabilization of these receptors triggered by WT161 are not dependent on HDAC6 inhibition. Moreover WT161 analog MAZ1793, which lacks HDAC inhibitory effect, similarly triggers cell line growth inhibition and downregulation of these receptors. We also confirm that WT161 significantly inhibits in vivo MCF7 cell growth, associated with downregulation of ERα, in a murine xenograft model. Finally, WT161 synergistically enhances bortezomib-induced cytotoxicity, even in bortezomib-resistant breast cancer cells. Our results therefore provide the rationale to develop a novel class of therapeutic agents targeting growth pathways central to the pathogenesis of breast cancer.
  • Thumbnail Image
    Publication
    Response and resistance to BET bromodomain inhibitors in triple negative breast cancer
    (2015) Shu, Shaokun; Lin, Charles Y.; He, Housheng Hansen; Witwicki, Robert; Tabassum, Doris P.; Roberts, Justin M.; Janiszewska, Michalina; Huh, Sung Jin; Liang, Yi; Ryan, Jeremy; Doherty, Ernest; Mohammed, Hisham; Guo, Hao; Stover, Daniel G.; Ekram, Muhammad B.; Brown, Jonathan; D'Santos, Clive; Krop, Ian; Dillon, Deborah; McKeown, Michael; Ott, Christopher; Qi, Jun; Ni, Min; Rao, Prakash K.; Duarte, Melissa; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Anders, Lars; Young, Richard A.; Winer, Eric; Letai, Antony; Barry, William T.; Carroll, Jason S.; Long, Henry; Brown, Myles; Liu, X. Shirley; Meyer, Clifford; Bradner, James E; Polyak, Kornelia
    Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy1-3. BET bromodomain inhibitors, which have shown efficacy in several models of cancer4-6, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyllysine recognition modules, leading to inhibition of oncogenic transcriptional programs7-9. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.