Person: Frederick, Blaise
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Frederick
First Name
Blaise
Name
Frederick, Blaise
5 results
Search Results
Now showing 1 - 5 of 5
Publication An Increase in Tobacco Craving Is Associated with Enhanced Medial Prefrontal Cortex Network Coupling(Public Library of Science, 2014) Janes, Amy; Farmer, Stacey; Frederick, Blaise; Nickerson, Lisa; Lukas, ScottCraving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI) in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC) network, which also included the subgenual anterior cingulate cortex (sgACC) extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.Publication Studying the Spatial Distribution of Physiological Effects on BOLD Signals Using Ultrafast fMRI(Frontiers Media S.A., 2014) Tong, Yunjie; Frederick, BlaiseThe blood-oxygen-level dependent (BOLD) signal in functional MRI (fMRI) reflects both neuronal activations and global physiological fluctuations. These physiological fluctuations can be attributed to physiological low frequency oscillations (pLFOs), respiration, and cardiac pulsation. With typical TR values, i.e., 2 s or longer, the high frequency physiological signals (i.e., from respiration and cardiac pulsation) are aliased into the low frequency band, making it hard to study the individual effect of these physiological processes on BOLD. Recently developed multiband EPI sequences, which offer full brain coverage with extremely short TR values (400 ms or less) allow these physiological signals to be spectrally separated. In this study, we applied multiband resting state scans on nine healthy participants with TR = 0.4 s. The spatial distribution of each physiological process on BOLD fMRI was explored using their spectral features and independent component analysis (ICA). We found that the spatial distributions of different physiological processes are distinct. First, cardiac pulsation affects mostly the base of the brain, where high density of arteries exists. Second, respiration affects prefrontal and occipital areas, suggesting the motion associated with breathing might contribute to the noise. Finally, and most importantly, we found that the effects of pLFOs dominated many prominent ICA components, which suggests that, contrary to the popular belief that aliased cardiac and respiration signals are the main physiological noise source in BOLD fMRI, pLFOs may be the most influential physiological signals. Understanding and measuring these pLFOs are important for denoising and accurately modeling BOLD signals.Publication Systemic Low-Frequency Oscillations in BOLD Signal Vary with Tissue Type(Frontiers Media S.A., 2016) Tong, Yunjie; Hocke, Lia M.; Lindsey, Kimberly P.; Erdoğan, Sinem B.; Vitaliano, Gordana; Caine, Carolyn E.; Frederick, BlaiseBlood-oxygen-level dependent (BOLD) signals are widely used in functional magnetic resonance imaging (fMRI) as a proxy measure of brain activation. However, because these signals are blood-related, they are also influenced by other physiological processes. This is especially true in resting state fMRI, during which no experimental stimulation occurs. Previous studies have found that the amplitude of resting state BOLD is closely related to regional vascular density. In this study, we investigated how some of the temporal fluctuations of the BOLD signal also possibly relate to regional vascular density. We began by identifying the blood-bound systemic low-frequency oscillation (sLFO). We then assessed the distribution of all voxels based on their correlations with this sLFO. We found that sLFO signals are widely present in resting state BOLD signals and that the proportion of these sLFOs in each voxel correlates with different tissue types, which vary significantly in underlying vascular density. These results deepen our understanding of the BOLD signal and suggest new imaging biomarkers based on fMRI data, such as amplitude of low-frequency fluctuation (ALFF) and sLFO, a combination of both, for assessing vascular density.Publication Can apparent resting state connectivity arise from systemic fluctuations?(Frontiers Media S.A., 2015) Tong, Yunjie; Hocke, Lia M.; Fan, Xiaoying; Janes, Amy; Frederick, BlaiseIt is widely accepted that the fluctuations in resting state blood oxygenation level dependent (BOLD) functional MRI (fMRI) reflect baseline neuronal activation through neurovascular coupling; this data is used to infer functional connectivity in the human brain during rest. Consistent activation patterns, i.e., resting state networks (RSN) are seen across groups, conditions, and even species. In this study, we show that some of these patterns can also be generated from the dynamic, systemic, non-neuronal physiological low frequency oscillations (sLFOs) in the BOLD signal alone. We have previously used multimodal imaging to demonstrate the wide presence of the same sLFOs in the brain (BOLD) and periphery with different time delays. This study shows that these sLFOs from BOLD signals alone can give rise to stable spatial patterns, which can be detected during resting state analyses. We generated synthetic resting state data for 11 subjects based only on subject-specific, dynamic sLFO information obtained from resting state data using concurrent peripheral optical imaging or a novel recursive procedure. We compared the results obtained by performing a group independent component analysis (ICA) on this synthetic data (i.e., the result from simulation) to the results obtained from analysis of the real data. ICA detected most of the eight well-known RSNs, including visual, motor, and default mode networks (DMNs), in both the real and the synthetic data sets. These findings suggest that RSNs may reflect, to some extent, vascular anatomy associated with systemic fluctuations, rather than neuronal connectivity.Publication Chemosensory Cues to Conspecific Emotional Stress Activate Amygdala in Humans(Public Library of Science, 2009) Mujica-Parodi, Lilianne R.; Strey, Helmut H.; Frederick, Blaise; Savoy, Robert; Cox, David; Botanov, Yevgeny; Tolkunov, Denis; Rubin, Denis; Weber, JochenAlarm substances are airborne chemical signals, released by an individual into the environment, which communicate emotional stress between conspecifics. Here we tested whether humans, like other mammals, are able to detect emotional stress in others by chemosensory cues. Sweat samples collected from individuals undergoing an acute emotional stressor, with exercise as a control, were pooled and presented to a separate group of participants (blind to condition) during four experiments. In an fMRI experiment and its replication, we showed that scanned participants showed amygdala activation in response to samples obtained from donors undergoing an emotional, but not physical, stressor. An odor-discrimination experiment suggested the effect was primarily due to emotional, and not odor, differences between the two stimuli. A fourth experiment investigated behavioral effects, demonstrating that stress samples sharpened emotion-perception of ambiguous facial stimuli. Together, our findings suggest human chemosensory signaling of emotional stress, with neurobiological and behavioral effects.