Person:
Slowikowski, Kamil

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Slowikowski

First Name

Kamil

Name

Slowikowski, Kamil

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis
    (Nature Publishing Group UK, 2018) Mizoguchi, Fumitaka; Slowikowski, Kamil; Wei, Kevin; Marshall, Jennifer L.; Rao, Deepak; Chang, Sook Kyung; Nguyen, Hung; Noss, Erika H.; Turner, Jason D.; Earp, Brandon; Blazar, Philip; Wright, John; Simmons, Barry; Donlin, Laura T.; Kalliolias, George D.; Goodman, Susan M.; Bykerk, Vivian P.; Ivashkiv, Lionel B.; Lederer, James; Hacohen, Nir; Nigrovic, Peter; Filer, Andrew; Buckley, Christopher D.; Raychaudhuri, Soumya; Brenner, Michael
    Fibroblasts regulate tissue homeostasis, coordinate inflammatory responses, and mediate tissue damage. In rheumatoid arthritis (RA), synovial fibroblasts maintain chronic inflammation which leads to joint destruction. Little is known about fibroblast heterogeneity or if aberrations in fibroblast subsets relate to pathology. Here, we show functional and transcriptional differences between fibroblast subsets from human synovial tissues using bulk transcriptomics of targeted subpopulations and single-cell transcriptomics. We identify seven fibroblast subsets with distinct surface protein phenotypes, and collapse them into three subsets by integrating transcriptomic data. One fibroblast subset, characterized by the expression of proteins podoplanin, THY1 membrane glycoprotein and cadherin-11, but lacking CD34, is threefold expanded in patients with RA relative to patients with osteoarthritis. These fibroblasts localize to the perivascular zone in inflamed synovium, secrete proinflammatory cytokines, are proliferative, and have an in vitro phenotype characteristic of invasive cells. Our strategy may be used as a template to identify pathogenic stromal cellular subsets in other complex diseases.
  • Thumbnail Image
    Publication
    Refining the role of de novo protein truncating variants in neurodevelopmental disorders using population reference samples
    (2017) Kosmicki, Jack; Samocha, Kaitlin E.; Howrigan, Daniel; Sanders, Stephan J.; Slowikowski, Kamil; Lek, Monkol; Karczewski, Konrad; Cutler, David J.; Devlin, Bernie; Roeder, Kathryn; Buxbaum, Joseph D.; Neale, Benjamin; MacArthur, Daniel; Wall, Dennis P.; Robinson, Elise; Daly, Mark
    Recent research has uncovered a significant role for de novo variation in neurodevelopmental disorders. Using aggregated data from 9246 families with autism spectrum disorder, intellectual disability, or developmental delay, we show ~1/3 of de novo variants are independently observed as standing variation in the Exome Aggregation Consortium’s cohort of 60,706 adults, and these de novo variants do not contribute to neurodevelopmental risk. We further use a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-intolerant genes that contain the observed signal of associated de novo protein truncating variants (PTVs) in neurodevelopmental disorders. LoF-intolerant genes also carry a modest excess of inherited PTVs; though the strongest de novo impacted genes contribute little to this, suggesting the excess of inherited risk resides lower-penetrant genes. These findings illustrate the importance of population-based reference cohorts for the interpretation of candidate pathogenic variants, even for analyses of complex diseases and de novo variation.
  • Thumbnail Image
    Publication
    Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells
    (Public Library of Science, 2014) Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J.; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip; Rich, Stephen S.; Stranger, Barbara E.; Brenner, Michael B.; Raychaudhuri, Soumya
    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p = 4.75×10−8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.
  • Thumbnail Image
    Publication
    SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci
    (Oxford University Press, 2014) Slowikowski, Kamil; Hu, Xinli; Raychaudhuri, Soumya
    Summary: We created a fast, robust and general C++ implementation of a single-nucleotide polymorphism (SNP) set enrichment algorithm to identify cell types, tissues and pathways affected by risk loci. It tests trait-associated genomic loci for enrichment of specificity to conditions (cell types, tissues and pathways). We use a non-parametric statistical approach to compute empirical P-values by comparison with null SNP sets. As a proof of concept, we present novel applications of our method to four sets of genome-wide significant SNPs associated with red blood cell count, multiple sclerosis, celiac disease and HDL cholesterol. Availability and implementation: http://broadinstitute.org/mpg/snpsea Contact: soumya@broadinstitute.org Supplementary information: Supplementary data are available at Bioinformatics online.
  • Thumbnail Image
    Publication
    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
    (2014) Arking, Dan E.; Pulit, Sara L.; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B.; Koopmann, Tamara T.; Sotoodehnia, Nona; Rossin, Elizabeth; Morley, Michael; Wang, Xinchen; Johnson, Andrew D.; Lundby, Alicia; Gudbjartsson, Daníel F.; Noseworthy, Peter A.; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V.; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M.; Nolte, Ilja M.; Smith, Albert Vernon; Bis, Joshua C.; Isaacs, Aaron; Newhouse, Stephen J.; Evans, Daniel S.; Post, Wendy S.; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A.; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J.; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W.; Naluai, Åsa T.; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G.; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A.; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D.; Harris, Tamara B.; Launer, Lenore J.; Shuldiner, Alan R.; Alonso, Alvaro; Bader, Joel S.; Ehret, Georg; Huang, Hailiang; Kao, W.H. Linda; Strait, James B.; Macfarlane, Peter W.; Brown, Morris; Caulfield, Mark J.; Samani, Nilesh J.; Kronenberg, Florian; Willeit, Johann; Smith, J. Gustav; Greiser, Karin H.; zu Schwabedissen, Henriette Meyer; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R.; Psaty, Bruce M.; Rotter, Jerome I.; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F.; Griffin, Maura; Daly, Mark; Arnar, David O.; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C.; Roden, Dan M.; Zuvich, Rebecca L.; Emilsson, Valur; Plump, Andrew S.; Larson, Martin G.; O'Donnell, Christopher; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P.; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R.; Nalls, Michael A.; Jula, Antti; Kontula, Kimmo K.; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M.; consortium, HRGEN; den Hoed, Marcel; Loos, Ruth J.F.; Thelle, Dag S.; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F.; Waldenberger, Melanie; de Boer, Rudolf A.; Franke, Lude; van der Vleuten, Pieter A.; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A.M.; Behr, Elijah R.; Dalageorgou, Chrysoula; Giudicessi, John R.; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M.; Scherer, Stephen W.; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E.; Fabiola Del, Greco M.; Fuchsberger, Christian; O'Connell, Jeffrey R.; Lee, Wai K.; Watt, Graham C.M.; Campbell, Harry; Wild, Sarah H.; El Mokhtari, Nour E.; Frey, Norbert; Asselbergs, Folkert W.; Leach, Irene Mateo; Navis, Gerjan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Kellis, Manolis; Krijthe, Bouwe P.; Franco, Oscar H.; Hofman, Albert; Kors, Jan A.; Uitterlinden, André G.; Witteman, Jacqueline C.M.; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A.; Abecasis, Gonçalo R.; Lakatta, Edward G.; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R.P.; Völker, Uwe; Snieder, Harold; Spector, Timothy D.; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T.; Viikari, Jorma S.; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N.; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F.; Nyberg, Fredrik; Whincup, Peter H.; Hingorani, Aroon; Schott, Jean-Jacques; Bezzina, Connie R.; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F.; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W.; Pramstaller, Peter P.; Lehtimäki, Terho J.; Paterson, Andrew D.; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia; Siscovick, David S.; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B.; Sanna, Serena; Ritchie, Marylyn D.; Stricker, Bruno H.; Stefansson, Kari; Boyer, Laurie A.; Cappola, Thomas P.; Olsen, Jesper V.; Lage, Kasper; Schwartz, Peter J.; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J.; Pfeufer, Arne; de Bakker, Paul I.W.; Newton-Cheh, Christopher
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
  • Publication
    Pathologically Expanded Peripheral T Helper Cell Subset Drives B Cells in Rheumatoid Arthritis
    (Springer Science and Business Media LLC, 2017-02-02) Rao, Deepak; Gurish, Michael F.; Marshall, Jennifer L.; Slowikowski, Kamil; Fonseka, Chamith Y.; Liu, Yanyan; Donlin, Laura T.; Henderson, Lauren; Wei, Kevin; Mizoguchi, Fumitaka; Teslovich, Nikola; Weinblatt, Michael; Massarotti, Elena; Coblyn, Jonathan; Helfgott, Simon; Lee, Yvonne C.; Todd, Derrick; Bykerk, Vivian P.; Goodman, Susan M.; Pernis, Alessandra B.; Ivashkiv, Lionel B.; Karlson, Elizabeth; Nigrovic, Peter; Filer, Andrew; Buckley, Christopher D.; Lederer, James; Raychaudhuri, Soumya; Brenner, Michael
    CD4+ T cells are central mediators of autoimmune pathology; however, defining their key effector functions in specific autoimmune diseases remains challenging. Pathogenic CD4+ T cells within affected tissues may be identified by expression of markers of recent activation1. Here, we used mass cytometry to evaluate activated T cells in joint tissue from patients with rheumatoid arthritis (RA), a chronic immune-mediated arthritis that affects up to 1% of the population2. This approach revealed a strikingly expanded population of PD-1hi CXCR5- CD4+ T cells in RA synovium. These cells are not exhausted. Rather, multidimensional cytometry, transcriptomics, and functional assays define a population of PD-1hi CXCR5- ‘peripheral helper’ T (Tph) cells that express factors enabling B cell help, including IL-21, CXCL13, ICOS, and MAF. Like PD-1hi CXCR5+ T follicular helper (Tfh) cells, Tph cells induce plasma cell differentiation in vitro via IL-21 and SLAMF5-interactions3,4. However, global transcriptomics robustly separate Tph cells from Tfh cells, with altered expression of Bcl6 and Blimp-1 and unique expression of chemokine receptors that direct migration to inflamed sites, such as CCR2, CX3CR1, and CCR5, in Tph cells. Tph cells appear uniquely poised to promote B cell responses and antibody production within pathologically inflamed non-lymphoid tissues.
  • Thumbnail Image
    Publication
    A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases
    (2016) Han, Buhm; Pouget, Jennie G.; Slowikowski, Kamil; Stahl, Eli; Lee, Cue Hyunkyu; Diogo, Dorothee; Hu, Xinli; Park, Yu Rang; Kim, Eunji; Gregersen, Peter K.; Dahlqvist, Solbritt Rantapää; Worthington, Jane; Martin, Javier; Eyre, Steve; Klareskog, Lars; Huizinga, Tom; Chen, Wei-Min; Onengut-Gumuscu, Suna; Rich, Stephen S.; Wray, Naomi R.; Raychaudhuri, Soumya
    There is growing evidence of shared risk alleles between complex traits (pleiotropy), including autoimmune and neuropsychiatric diseases. This might be due to sharing between all individuals (whole-group pleiotropy), or a subset of individuals within a genetically heterogeneous cohort (subgroup heterogeneity). BUHMBOX is a well-powered statistic distinguishing between these two situations using genotype data. We observed a shared genetic basis between 11 autoimmune diseases and type 1 diabetes (T1D, p<10−4), and 11 autoimmune diseases and rheumatoid arthritis (RA, p<10−3). This sharing was not explained by subgroup heterogeneity (corrected pBUHMBOX>0.2, 6,670 T1D cases and 7,279 RA cases). Genetic sharing between seronegative and seropostive RA (p<10−9) had significant evidence of subgroup heterogeneity, suggesting a subgroup of seropositive-like cases within seronegative cases (pBUHMBOX=0.008, 2,406 seronegative RA cases). We also observed a shared genetic basis between major depressive disorder (MDD) and schizophrenia (p<10−4) that was not explained by subgroup heterogeneity (pBUHMBOX=0.28 in 9,238 MDD cases).