Person: Zheng, Bin
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Zheng
First Name
Bin
Name
Zheng, Bin
2 results
Search Results
Now showing 1 - 2 of 2
Publication Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma(2016) Shen, Che-Hung; Kim, Sun Hye; Trousil, Sebastian; Frederick, Dennie T.; Piris, Adriano; Yuan, Ping; Cai, Li; Gu, Lei; Li, Man; Lee, Jung Hyun; Mitra, Devarati; Fisher, David; Sullivan, Ryan; Flaherty, Keith; Zheng, BinThe protein kinase V-Raf murine sarcoma viral oncogene homolog B (BRAF) is an oncogenic driver and therapeutic target in melanoma. Inhibitors of BRAF (BRAFi) have shown high response rates and extended survival in melanoma patients bearing tumors that express BRAF Val600 mutations, but a vast majority of these patients develop drug resistance. Here we show that loss of Stromal antigen 2 or 3 (STAG2 or STAG3), which encode subunits of the cohesin complex, in melanoma cells results in resistance to BRAFi. We identified loss-of-function mutations in STAG2 as well as decreased expression of STAG2 or STAG3 proteins in several tumor samples from patients with acquired resistance to BRAFi and in BRAFi-resistant melanoma cell lines. Knockdown of STAG2 or STAG3 decreased sensitivity of Val600Glu BRAF-mutant melanoma cells and xenograft tumors to BRAFi. Loss of STAG2 inhibited CCCTC-binding factor (CTCF)-mediated expression of dual specificity phosphatase 6 (DUSP6), leading to reactivation of ERK signaling. Our studies unveil a previously unknown genetic mechanism of BRAFi resistance and provide new insights into the tumor suppressor function of STAG2 and STAG3.Publication The Influence of Radiographic Phenotype and Smoking Status on Peripheral Blood Biomarker Patterns in Chronic Obstructive Pulmonary Disease(Public Library of Science, 2009) Bon, Jessica M.; Leader, Joseph K.; Weissfeld, Joel L.; Coxson, Harvey O.; Branch, Robert A.; Kondragunta, Venkateswarlu; Lee, Janet S.; Zhang, Yingze; Lokshin, Anna E.; Kaminski, Naftali; Gur, David; Sciurba, Frank C.; Zheng, Bin; Choi, Augustine M.K.Background: Chronic obstructive pulmonary disease (COPD) is characterized by both airway remodeling and parenchymal destruction. The identification of unique biomarker patterns associated with airway dominant versus parenchymal dominant patterns would support the existence of unique phenotypes representing independent biologic processes. A cross-sectional study was performed to examine the association of serum biomarkers with radiographic airway and parenchymal phenotypes of COPD. Methodology/Principal Findings: Serum from 234 subjects enrolled in a CT screening cohort was analyzed for 33 cytokines and growth factors using a multiplex protein array. The association of serum markers with forced expiratory volume in one second percent predicted (FEV1%) and quantitative CT measurements of airway thickening and emphysema was assessed with and without stratification for current smoking status. Significant associations were found with several serum inflammatory proteins and measurements of FEV1%, airway thickening, and parenchymal emphysema independent of smoking status. The association of select analytes with airway thickening and emphysema was independent of FEV1%. Furthermore, the relationship between other inflammatory markers and measurements of physiologic obstruction or airway thickening was dependent on current smoking status. Conclusions/Significance: Airway and parenchymal phenotypes of COPD are associated with unique systemic serum biomarker profiles. Serum biomarker patterns may provide a more precise classification of the COPD syndrome, provide insights into disease pathogenesis and identify targets for novel patient-specific biological therapies.