Person:
Kedersha, Nancy

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kedersha

First Name

Nancy

Name

Kedersha, Nancy

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation
    (Impact Journals LLC, 2016) Szaflarski, Witold; Fay, Marta M.; Kedersha, Nancy; Zabel, Maciej; Anderson, Paul; Ivanov, Pavel
    Resistance to chemotherapy drugs is a serious therapeutic problem and its underlying molecular mechanisms are complex. Stress granules (SGs), cytoplasmic ribonucleoprotein complexes assembled in cells exposed to stress, are implicated in various aspects of cancer cell metabolism and survival. SGs promote the survival of stressed cells by reprogramming gene expression and inhibiting pro-apoptotic signaling cascades. We show that the vinca alkaloid (VA) class of anti-neoplastic agents potently activates a SG-mediated stress response program. VAs inhibit translation initiation by simultaneous activation of eIF4E-BP1 and phosphorylation of eIF2α, causing polysome disassembly and SG assembly. VA-induced SGs contain canonical SG components but lack specific signaling molecules. Blocking VA-induced SG assembly by inactivating eIF4EBP1 or inhibiting eIF2α phosphorylation decreases cancer cell viability and promotes apoptosis. Our data describe previously unappreciated effects of VAs on cellular RNA metabolism and illuminate the roles of SGs in cancer cell survival.
  • Thumbnail Image
    Publication
    YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression
    (Oxford University Press, 2016) Lyons, Shawn; Achorn, Chris; Kedersha, Nancy; Anderson, Paul; Ivanov, Pavel
    Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program.
  • Thumbnail Image
    Publication
    G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits
    (The Rockefeller University Press, 2016) Kedersha, Nancy; Panas, Marc D.; Achorn, Christopher A.; Lyons, Shawn; Tisdale, Sarah; Hickman, Tyler; Thomas, Marshall; Lieberman, Judy; McInerney, Gerald M.; Ivanov, Pavel; Anderson, Paul
    Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.