Person:
Zanoni, Ivan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Zanoni

First Name

Ivan

Name

Zanoni, Ivan

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients’ peripheral blood
    (Nature Publishing Group UK, 2017) Rusconi, Michela; Gerardi, Francesca; Santus, William; Lizio, Andrea; Sansone, Valeria Ada; Lunetta, Christian; Zanoni, Ivan; Granucci, Francesca
    Chronic inflammation is one of the causes of neurodegeneration in Amyotrophic lateral sclerosis (ALS). Here we examined whether circulating dendritic cells (DCs) can contribute to disease progression. We found ALS patients show a significant reduction in the number of circulating DCs. Also, patients’ DCs present an increased expression of CD62L and a tendency to overexpress CCR2 compared with healthy donors. Moreover, DCs derived from a subpopulation of ALS patients produced higher levels of IL-8 and CCL-2 upon lipopolysaccharide (LPS)-stimulation. Finally, we found a significant inverse correlation between the time from onset of the pathology to its diagnosis and the levels of IL-6 secretion induced by LPS. Our data support the hypothesis, in a subpopulation of patients, DCs recruited at the diseased tissue produce high levels of CCL-2 and IL-8 and contribute to the inflammatory process promoting the recruitment of other inflammatory cells. An increased efficiency of IL-6 production may accelerate only the initial phases of disease progression. Blood DC analysis can be used to identify ALS patients with an altered course of inflammatory cell recruitment at the diseased central nervous system (CNS). The high levels of CD62L expression suggests this molecule could be a target for treatment of CNS inflammation.
  • Thumbnail Image
    Publication
    Prolonged contact with dendritic cells turns lymph node‐resident NK cells into anti‐tumor effectors
    (John Wiley and Sons Inc., 2016) Mingozzi, Francesca; Spreafico, Roberto; Gorletta, Tatiana; Cigni, Clara; Di Gioia, Marco; Caccia, Michele; Sironi, Laura; Collini, Maddalena; Soncini, Matias; Rusconi, Michela; von Andrian-Werburg, Ulrich; Chirico, Giuseppe; Zanoni, Ivan; Granucci, Francesca
    Abstract Natural killer (NK) cells are critical players against tumors. The outcome of anti‐tumor vaccination protocols depends on the efficiency of NK‐cell activation, and efforts are constantly made to manipulate them for immunotherapeutic approaches. Thus, a better understanding of NK‐cell activation dynamics is needed. NK‐cell interactions with accessory cells and trafficking between secondary lymphoid organs and tumoral tissues remain poorly characterized. Here, we show that upon triggering innate immunity with lipopolysaccharide (LPS), NK cells are transiently activated, leave the lymph node, and infiltrate the tumor, delaying its growth. Interestingly, NK cells are not actively recruited at the draining lymph node early after LPS administration, but continue their regular homeostatic turnover. Therefore, NK cells resident in the lymph node at the time of LPS administration become activated and exert anti‐tumor functions. NK‐cell activation correlates with the establishment of prolonged interactions with dendritic cells (DCs) in lymph nodes, as observed by two‐photon microscopy. Close DC and NK‐cell contacts are essential for the localized delivery of DC‐derived IL‐18 to NK cells, a strict requirement in NK‐cell activation.
  • Thumbnail Image
    Publication
    Cream Formulation Impact on Topical Administration of Engineered Colloidal Nanoparticles
    (Public Library of Science, 2015) Santini, Benedetta; Zanoni, Ivan; Marzi, Roberta; Cigni, Clara; Bedoni, Marzia; Gramatica, Furio; Palugan, Luca; Corsi, Fabio; Granucci, Francesca; Colombo, Miriam
    In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide) nanoparticles (MNP) coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP) cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics.
  • Thumbnail Image
    Publication
    Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs
    (Frontiers Media S.A., 2017) Zanoni, Ivan; Granucci, Francesca; Broggi, Achille
    Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings.