Person: Sweeney, Christopher
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sweeney
First Name
Christopher
Name
Sweeney, Christopher
4 results
Search Results
Now showing 1 - 4 of 4
Publication [18F]-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography of LAPC4-CR Castration-Resistant Prostate Cancer Xenograft Model in Soft Tissue Compartments1(Neoplasia Press, 2015) McCall, Keisha C.; Cheng, Su-Chun; Huang, Ying; Kohl, Nancy E.; Tupper, Tanya; Van Den Abbeele, Annick; Zukotynski, Katherine A.; Sweeney, ChristopherPreclinical xenograft models have contributed to advancing our understanding of the molecular basis of prostate cancer and to the development of targeted therapy. However, traditional preclinical in vivo techniques using caliper measurements and survival analysis evaluate the macroscopic tumor behavior, whereas tissue sampling disrupts the microenvironment and cannot be used for longitudinal studies in the same animal. Herein, we present an in vivo study of [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) designed to evaluate the metabolism within the microenvironment of LAPC4-CR, a unique murine model of castration-resistant prostate cancer. Mice bearing LAPC4-CR subcutaneous tumors were administered [18F]-FDG via intravenous injection. After a 60-minute distribution phase, the mice were imaged on a PET/CT scanner with submillimeter resolution; and the fused PET/CT images were analyzed to evaluate tumor size, location, and metabolism across the cohort of mice. The xenograft tumors showed [18F]-FDG uptake that was independent of tumor size and was significantly greater than uptake in skeletal muscle and liver in mice (Wilcoxon signed-rank P values of .0002 and .0002, respectively). [18F]-FDG metabolism of the LAPC4-CR tumors was 2.1 ± 0.8 ID/cm3*wt, with tumor to muscle ratio of 7.4 ± 4.7 and tumor to liver background ratio of 6.7 ± 2.3. Noninvasive molecular imaging techniques such as PET/CT can be used to probe the microenvironment of tumors in vivo. This study showed that [18F]-FDG-PET/CT could be used to image and assess glucose metabolism of LAPC4-CR xenografts in vivo. Further work can investigate the use of PET/CT to quantify the metabolic response of LAPC4-CR to novel agents and combination therapies using soft tissue and possibly bone compartment xenograft models.Publication Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation(Proceedings of the National Academy of Sciences, 2014) Hsieh, Chen-Lin; Fei, Teng; Chen, Yiwen; Li, Tiantian; Gao, Yanfei; Wang, Xiaodong; Sun, Tong; Sweeney, Christopher; Lee, Gwo-Shu Mary; Chen, Shaoyong; Balk, Steven; Liu, Xiaole; Brown, Myles; Kantoff, PhilipThe androgen receptor (AR) is a key factor that regulates the behavior and fate of prostate cancer cells. The AR-regulated network is activated when AR binds enhancer elements and modulates specific enhancer–promoter looping. Kallikrein-related peptidase 3 (KLK3), which codes for prostate-specific antigen (PSA), is a well-known AR-regulated gene and its upstream enhancers produce bidirectional enhancer RNAs (eRNAs), termed KLK3e. Here, we demonstrate that KLK3e facilitates the spatial interaction of the KLK3 enhancer and the KLK2 promoter and enhances long-distance KLK2 transcriptional activation. KLK3e carries the core enhancer element derived from the androgen response element III (ARE III), which is required for the interaction of AR and Mediator 1 (Med1). Furthermore, we show that KLK3e processes RNA-dependent enhancer activity depending on the integrity of core enhancer elements. The transcription of KLK3e was detectable and its expression is significantly correlated with KLK3 \((R^2 = 0.6213, P < 5 × 10^{−11})\) and KLK2 \((R^2 = 0.5893, P < 5 × 10^{−10})\) in human prostate tissues. Interestingly, RNAi silencing of KLK3e resulted in a modest negative effect on prostate cancer cell proliferation. Accordingly, we report that an androgen-induced eRNA scaffolds the AR-associated protein complex that modulates chromosomal architecture and selectively enhances AR-dependent gene expression.Publication Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer(Public Library of Science, 2016) Börnigen, Daniela; Tyekucheva, Svitlana; Wang, Xiaodong; Rider, Jennifer; Lee, Gwo-Shu; Mucci, Lorelei; Sweeney, Christopher; Huttenhower, CurtisMolecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies.Publication Genetic Determinants of Chromatin Reveal Prostate Cancer Risk Mediated by Context-Dependent Gene Regulation(Cold Spring Harbor Laboratory, 2022-09-07) Baca, Sylvan; Singler, Cassandra; Zacharia, Soumya; Seo, Ji-Heui; Morova, Tunc; Hach, Faraz; Ding, Yi; Schwarz, Tommer; Huang, Chia-Chi Flora; Anderson, Jacob; Fay, Andre; Kalita, Cynthia; Groha, Stefan; Pomerantz, Mark; Wang, Victoria; Linder, Simon; Sweeney, Christopher; Zwart, Wilbert; Lack, Nathan A.; Pasaniuc, Bogdan; Takeda, David; Gusev, Alexander; Freedman, MatthewAbstractMethods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs), are widely used to functionally annotate trait-associated variants, but they are limited in identifying context-dependent effects on transcription. To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for nominating variants that impact traits through their effects on chromatin state. CWAS associates the genetic determinants of cistromes (e.g., the genome-wide profiles of transcription factor binding sites or histone modifications) with traits using summary statistics from genome-wide association studies (GWAS). We performed CWASs of prostate cancer and androgen-related traits, using a reference panel of 307 prostate cistromes from 165 individuals. CWAS nominated susceptibility regulatory elements or androgen receptor (AR) binding sites at 52 out of 98 known prostate cancer GWAS loci and implicated an additional 17 novel loci. We functionally validated a subset of our results using CRISPRi and in vitro reporter assays. At 28 of the 52 risk loci, CWAS identified regulatory mechanisms that are not observable via eQTLs, implicating genes with complex or context-specific regulation that are overlooked by current approaches that relying on steady-state transcript measurements. CWAS genes include transcription factors that govern prostate development such as NKX3-1, HOXB13, GATA2, and KLF5. Moreover, CWAS boosts discovery power in modestly sized GWAS, identifying novel genetic associations mediated through AR binding for androgen-related phenotypes, including resistance to prostate cancer therapy. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting context-dependent transcriptional regulation.