Person: Rand, David Gertler
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Rand
First Name
David Gertler
Name
Rand, David Gertler
20 results
Search Results
Now showing 1 - 10 of 20
Publication The Evolution of Antisocial Punishment in Optional Public Goods Games(Nature Publishing Group, 2011) Rand, David Gertler; Nowak, MartinCooperation, where one individual incurs a cost to help another, is a fundamental building block of the natural world and human society. It has been suggested that costly punishment can promote the evolution of cooperation, with the threat of punishment deterring free-riders. Recent experiments, however, have revealed the existence of 'antisocial' punishment, where non-cooperators punish cooperators. While various theoretical models find that punishment can promote the evolution of cooperation, these models a priori exclude the possibility of antisocial punishment. Here we extend the standard theory of optional public goods games to include the full set of punishment strategies. We find that punishment no longer increases cooperation, and that selection favours substantial levels of antisocial punishment for a wide range of parameters. Furthermore, we conduct behavioural experiments, showing results consistent with our model predictions. As opposed to an altruistic act that promotes cooperation, punishment is mostly a self-interested tool for protecting oneself against potential competitors.Publication Contagion of Cooperation in Static and Fluid Social Networks(Public Library of Science, 2013) Jordan, Jillian J.; Rand, David Gertler; Arbesman, Samuel; Fowler, James H.; Christakis, Nicholas A.Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects’ desire to attract new cooperative partners: even if many of one’s current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.Publication It's the thought that counts: The role of intentions in noisy repeated games(Elsevier BV, 2015) Rand, David Gertler; Fudenberg, Drew; Dreber, AnnaWe examine cooperation in repeated interactions where intended actions are implemented with noise but intentions are perfectly observable. Observable intentions lead to more cooperation compared to control games where intentions are unobserved, allowing subjects to reach similar cooperation levels as in games without noise. Most subjects condition exclusively on intentions, and use simpler, lower-memory strategies compared to games where intentions are unobservable. When the returns to cooperation are high, some subjects are tolerant, using good outcomes to forgive attempted defections; when the returns to cooperation are low, some subjects are punitive, using bad outcomes to punish accidental defections.Publication Individual versus systemic risk and the Regulator's Dilemma(Proceedings of the National Academy of Sciences, 2011) Beale, N.; Rand, David Gertler; Battey, H.; Croxson, K.; May, R. M.; Nowak, MartinThe global financial crisis of 2007–2009 exposed critical weaknesses in the financial system. Many proposals for financial reform address the need for systemic regulation—that is, regulation focused on the soundness of the whole financial system and not just that of individual institutions. In this paper, we study one particular problem faced by a systemic regulator: the tension between the distribution of assets that individual banks would like to hold and the distribution across banks that best supports system stability if greater weight is given to avoiding multiple bank failures. By diversifying its risks, a bank lowers its own probability of failure. However, if many banks diversify their risks in similar ways, then the probability of multiple failures can increase. As more banks fail simultaneously, the economic disruption tends to increase disproportionately. We show that, in model systems, the expected systemic cost of multiple failures can be largely explained by two global parameters of risk exposure and diversity, which can be assessed in terms of the risk exposures of individual actors. This observation hints at the possibility of regulatory intervention to promote systemic stability by incentivizing a more diverse diversification among banks. Such intervention offers the prospect of an additional lever in the armory of regulators, potentially allowing some combination of improved system stability and reduced need for additional capital.Publication Uncalculating cooperation is used to signal trustworthiness(Proceedings of the National Academy of Sciences, 2016) Jordan, Jillian J.; Hoffman, Moshe; Nowak, Martin; Rand, David GertlerHumans frequently cooperate without carefully weighing the costs and benefits. As a result, people may wind up cooperating when it is not worthwhile to do so. Why risk making costly mistakes? Here, we present experimental evidence that reputation concerns provide an answer: people cooperate in an uncalculating way to signal their trustworthiness to observers. We present two economic game experiments in which uncalculating versus calculating decision-making is operationalized by either a subject’s choice of whether to reveal the precise costs of cooperating (Exp. 1) or the time a subject spends considering these costs (Exp. 2). In both experiments, we find that participants are more likely to engage in uncalculating cooperation when their decision-making process is observable to others. Furthermore, we confirm that people who engage in uncalculating cooperation are perceived as, and actually are, more trustworthy than people who cooperate in a calculating way. Taken together, these data provide the first empirical evidence, to our knowledge, that uncalculating cooperation is used to signal trustworthiness, and is not merely an efficient decision-making strategy that reduces cognitive costs. Our results thus help to explain a range of puzzling behaviors, such as extreme altruism, the use of ethical principles, and romantic love.Publication Emotions as infectious diseases in a large social network: the SISa model(The Royal Society, 2010) Hill, Alison; Rand, David Gertler; Nowak, Martin; Christakis, Nicholas A.Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible–infected–susceptible disease model which includes the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment ‘infection’ (10 years) or discontentment ‘infection’ (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs.Publication Evolution of In-Group Favoritism(Nature Publishing Group, 2012) Fu, Feng; Tarnita, Corina; Christakis, Nicholas A.; Wang, Long; Rand, David Gertler; Nowak, MartinIn-group favoritism is a central aspect of human behavior. People often help members of their own group more than members of other groups. Here we propose a mathematical framework for the evolution of in-group favoritism from a continuum of strategies. Unlike previous models, we do not pre-suppose that players never cooperate with out-group members. Instead, we determine the conditions under which preferential in-group cooperation emerges, and also explore situations where preferential out-group helping could evolve. Our approach is not based on explicit intergroup conflict, but instead uses evolutionary set theory. People can move between sets. Successful sets attract members, and successful strategies gain imitators. Individuals can employ different strategies when interacting with in-group versus out-group members. Our framework also allows us to implement different games for these two types of interactions. We prove general results and derive specific conditions for the evolution of cooperation based on in-group favoritism.Publication Infectious Disease Modeling of Social Contagion in Networks(Public Library of Science, 2010) Hill, Alison; Rand, David Gertler; Nowak, Martin; Christakis, Nicholas A.Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a novel theoretical framework for studying these phenomena (the SISa model) by adapting a classic disease model to include the possibility for ‘automatic’ (or ‘spontaneous’) non-social infection. We provide an example of the use of this framework by examining the spread of obesity in the Framingham Heart Study Network. The interaction assumptions of the model are validated using longitudinal network transmission data. We find that the current rate of becoming obese is 2% per year and increases by 0.5 percentage points for each obese social contact. The rate of recovering from obesity is 4% per year, and does not depend on the number of non-obese contacts. The model predicts a long-term obesity prevalence of approximately 42, and can be used to evaluate the effect of different interventions on steady-state obesity. Model predictions quantitatively reproduce the actual historical time course for the prevalence of obesity. We find that since the 1970s, the rate of recovery from obesity has remained relatively constant, while the rates of both spontaneous infection and transmission have steadily increased over time. This suggests that the obesity epidemic may be driven by increasing rates of becoming obese, both spontaneously and transmissively, rather than by decreasing rates of losing weight. A key feature of the SISa model is its ability to characterize the relative importance of social transmission by quantitatively comparing rates of spontaneous versus contagious infection. It provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviors, health states, ideas or diseases with reservoirs.Publication Massively Parallel Model of Extended Memory Use in Evolutionary Game Dynamics(IEEE, 2013) Randles, Amanda Elizabeth; Rand, David Gertler; Lee, Christopher; Sircar, Jayanta; Nowak, Martin; Pfister, HanspeterTo study the emergence of cooperative behavior, we have developed a scalable parallel framework for evolutionary game dynamics. This is a critical computational tool enabling large-scale agent simulation research. An important aspect is the amount of history, or memory steps, that each agent can keep. When six memory steps are taken into account, the strategy space spans \(2^{4096}\) potential strategies, requiring large populations of agents. We introduce a multi-level decomposition method that allows us to exploit both multi-node and thread-level parallel scaling while minimizing communication overhead. We present the results of a production run modeling up to six memory steps for populations consisting of up to 1018 agents, making this study one of the largest yet undertaken. The high rate of mutation within the population results in a non-trivial parallel implementation. The strong and weak scaling studies provide insight into parallel scalability and programmability trade-offs for large-scale simulations, while exhibiting near perfect weak and strong scaling on 16,384 tasks on Blue Gene/Q. We further show 99% weak scaling up to 294,912 processors 82% strong scaling efficiency up to 262,144 processors of Blue Gene/P. Our framework marks an important step in the study of game dynamics with potential applications in fields ranging from biology to economics and sociology.Publication Dynamic remodeling of in-group bias during the 2008 Presidential election(National Academy of Sciences, 2009) Rand, David Gertler; Pfeiffer, Thomas; Dreber-Almenberg, Anna; Sheketoff, Rachel W.; Wernerfelt, Nils Christian; Benkler, YochaiPeople often favor members of their own group, while discriminating against members of other groups. Such in-group favoritism has been shown to play an important role in human cooperation. However, in the face of changing conflicts and shifting alliances, it is essential for group identities to be flexible. Using the dictator game from behavioral economics, we demonstrate the remodeling of group identities among supporters of Democratic presidential candidates Barack Obama and Hillary Clinton. After Clinton's concession in June 2008, Democrats were more generous toward supporters of their own preferred candidate than to supporters of the other Democratic candidate. The bias observed in June persisted into August, and disappeared only in early September after the Democratic National Convention. We also observe a strong gender effect, with bias both appearing and subsiding among men only. This experimental study illustrates a dynamic change in bias, tracking the realignment of real world conflict lines and public efforts to reconstitute group identity. The change in salient group identity we describe here likely contributed to the victory of Barack Obama in the 2008 presidential election.