Person: Bischoff, Colin
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bischoff
First Name
Colin
Name
Bischoff, Colin
21 results
Search Results
Now showing 1 - 10 of 21
Publication The Keck Array: A Multi Camera CMB Polarimeter at the South Pole(Springer Nature, 2012) Staniszewski, Z.; Aikin, R. W.; Amiri, M.; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Bonetti, J. A.; Brevik, J. A.; Burger, B.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Hristov, V. V.; Irwin, K.; Kovac, John; Kuo, C. L.; Lueker, M.; Montroy, T.; Nguyen, H. T.; Ogburn, R. W.; O’Brient, R.; Orlando, A.; Pryke, C.; Reintsema, C.; Ruhl, J. E.; Schwarz, R.; Sheehy, C.; Stokes, S.; Thompson, K. L.; Teply, G.; Tolan, J. E.; Turner, A. D.; Vieregg, Abigail G.; Wilson, P.; Wiebe, D.; Wong, CThe Keck array is a new multi-camera Cosmic Microwave Background (CMB) polarimeter. Each camera contains 256 polarization pairs of antenna-coupled transition edge sensor (TES) bolometers. We recently deployed three of five cameras at the geographic South Pole, and plan to deploy the final two cameras in early 2012. This new telescope is an ideal instrument to search for the primordial B-mode polarization signal imprinted in the CMB by inflationary gravitational waves. We will discuss the design of the detectors and receivers, the status of current observations, and report on progress toward upgrading the instrument with the full compliment of polarized receivers.Publication Inflation Physics from the Cosmic Microwave Background and Large Scale Structure(The Division of Particles and Fields of the American Physical Society, 2013) Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, Colin; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, John; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, Antony; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.Publication Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure(The Division of Particles and Fields of the American Physical Society, 2013) Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, Colin; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, John; Kuo, C.-L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, Antony; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.Publication Degree-Scale Cosmic Microwave Background Polarization Measurements From Three Years of BICEP1 Data(American Astronomical Society, 2014) Barkats, D.; Aikin, R.; Bischoff, Colin; Buder, I; Kaufman, J. P.; Keating, B. G.; Kovac, John; Su, Meng; Ade, P. A. R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Richter, S.; Rocha, G.; Sheehy, C.; Kernasovskiy, S. S.; Takahashi, Y. D.; Tolan, J. E.; Yoon, K. W.BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at \(21 \leq l \leq 335\) and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at \(15\sigma\). The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to \(r = 0.03^{+0.27}_{-0.23}\), or \(r < 0.70\) at 95% confidence level.Publication Scientific Verification Of Faraday Rotation Modulators: Detection Of Diffuse Polarized Galactic Emission(American Astronomical Society, 2013) Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, Colin; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kaufman, J.; Keating, B. G.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Richter, S.; Rocha, G.; Sheehy, C.; Takahashi, Y. D.; Tolan, J. E.; Wollack, E.; Yoon, K. W.The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs.Publication BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array(IOP Publishing, 2015) Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, Kate; Barkats, D.; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Brevik, J. A.; Buder, I; Bullock, E.; Buza, Victor; Connors, Jake Anthony; Crill, B. P.; Dowell, C. D.; Dvorkin, Cora; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Harrison, S.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hristov, V. V.; Hui, H.; Irwin, K. D.; Karkare, Kirit Sukrit; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Mason, P.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O’Brient, R.; Ogburn IV, R. W.; Orlando, A.; Pryke, C.; Reintsema, C. D.; Richter, Sonja Valeska; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Willmert, J.; Wong, C. L.; Yoon, K. W.The Keck Array is a system of cosmic microwave background polarimeters, each similar to the Bicep2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as Bicep2. We again find an excess of B-mode power over the lensed-ΛCDM expectation of >5σ in the range 30 < ℓ < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with Bicep2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg(2) for an equivalent survey weight of 250,000 μK(−)(2). The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6σ.Publication Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band(American Physical Society (APS), 2016) Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Bowens-Rubin, Rachel; Brevik, J. A.; Buder, I; Bullock, E.; Buza, Victor; Connors, Jake Anthony; Crill, B. P.; Duband, L.; Dvorkin, Cora; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, Sarah; Hilton, G. C.; Hui, H.; Irwin, K. D.; Karkare, Kirit Sukrit; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O’Brient, R.; Ogburn, R. W.; Orlando, A.; Pryke, C; Richter, Sonja Valeska; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C; Wu, W. L. K.; Yoon, K. W.We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95 × 150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23 × 95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23 × 353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r0.05 < 0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r0.05 < 0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.Publication Detection of B-Mode Polarization at Degree Angular Scales by BICEP2(American Physical Society (APS), 2014) Ade, P. A. R.; Aikin, R. W.; Barkats, Denis; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Brevik, J. A.; Buder, I; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hristov, V. V.; Irwin, K. D.; Karkare, Kirit; Kaufman, J. P.; Keating, B. G.; Kernasovskiy, S. A.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Mason, P.; Netterfield, C. B.; Nguyen, H. T.; O’Brient, R.; Ogburn, R. W.; Orlando, Abigail; Pryke, C; Reintsema, C. D.; Richter, Sonja Valeska; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Wong, C; Yoon, K. W.We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.Publication bicep2/Keck Array. IV. Optical Characterization and Performance of the Bicep2 and Keck Array Experiments(IOP Publishing, 2015) Ade, P. A. R.; Aikin, R. W.; Barkats, Denis; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Bradford, K. J.; Brevik, J. A.; Buder, I; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J. H.; Karkare, Kirit Sukrit; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O’Brient, R.; IV, R. W. Ogburn; Orlando, A.; Pryke, C; Richter, Sonja Valeska; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Thompson, K.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wong, C; Yoon, K. W.bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.Publication BICEP2. II. Experiment and three-year data set(IOP Publishing, 2014) Ade, P. A. R.; Aikin, R. W.; Amiri, M.; Barkats, Denis; Benton, S. J.; Bischoff, Colin; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Davis, G.; Day, P. K.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Irwin, K. D.; Karkare, Kirit Sukrit; Kaufman, J. P.; Keating, B. G.; Kernasovskiy, S. A.; Kovac, John; Kuo, C. L.; Leitch, E. M.; Llombart, N.; Lueker, M.; Netterfield, C. B.; Nguyen, H. T.; O, R.; Ogburn, R. W.; Orlando, Abigail; Pryke, C; Reintsema, C. D.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Story, K. T.; Sudiwala, R. V.; Teply, G. P.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Wilson, P.; Wong, C; Yoon, K. W.We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1°-5°(l = 40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26 cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 μ {K}\sqrt{{s}}. The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.'2 μK) over an effective area of 384 deg2 within a 1000 deg2 field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.
- «
- 1 (current)
- 2
- 3
- »