Person:
Oh, Eun-Yeong

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Oh

First Name

Eun-Yeong

Name

Oh, Eun-Yeong

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Computational Pathology to Discriminate Benign from Malignant Intraductal Proliferations of the Breast
    (Public Library of Science, 2014) Dong, Fei; Irshad, Humayun; Oh, Eun-Yeong; Lerwill, Melinda F.; Brachtel, Elena; Jones, Nicholas C.; Knoblauch, Nicholas W.; Montaser-Kouhsari, Laleh; Johnson, Nicole B.; Rao, Luigi K. F.; Faulkner-Jones, Beverly; Wilbur, David; Schnitt, Stuart; Beck, Andrew
    The categorization of intraductal proliferative lesions of the breast based on routine light microscopic examination of histopathologic sections is in many cases challenging, even for experienced pathologists. The development of computational tools to aid pathologists in the characterization of these lesions would have great diagnostic and clinical value. As a first step to address this issue, we evaluated the ability of computational image analysis to accurately classify DCIS and UDH and to stratify nuclear grade within DCIS. Using 116 breast biopsies diagnosed as DCIS or UDH from the Massachusetts General Hospital (MGH), we developed a computational method to extract 392 features corresponding to the mean and standard deviation in nuclear size and shape, intensity, and texture across 8 color channels. We used L1-regularized logistic regression to build classification models to discriminate DCIS from UDH. The top-performing model contained 22 active features and achieved an AUC of 0.95 in cross-validation on the MGH data-set. We applied this model to an external validation set of 51 breast biopsies diagnosed as DCIS or UDH from the Beth Israel Deaconess Medical Center, and the model achieved an AUC of 0.86. The top-performing model contained active features from all color-spaces and from the three classes of features (morphology, intensity, and texture), suggesting the value of each for prediction. We built models to stratify grade within DCIS and obtained strong performance for stratifying low nuclear grade vs. high nuclear grade DCIS (AUC = 0.98 in cross-validation) with only moderate performance for discriminating low nuclear grade vs. intermediate nuclear grade and intermediate nuclear grade vs. high nuclear grade DCIS (AUC = 0.83 and 0.69, respectively). These data show that computational pathology models can robustly discriminate benign from malignant intraductal proliferative lesions of the breast and may aid pathologists in the diagnosis and classification of these lesions.
  • Thumbnail Image
    Publication
    Extensive rewiring of epithelial-stromal co-expression networks in breast cancer
    (BioMed Central, 2015) Oh, Eun-Yeong; Christensen, Stephen M; Ghanta, Sindhu; Jeong, Jong Cheol; Bucur, Octavian; Glass, Benjamin; Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Bertos, Nicholas; Saleh, Sadiq MI; Haibe-Kains, Benjamin; Park, Morag; Beck, Andrew
    Background: Epithelial-stromal crosstalk plays a critical role in invasive breast cancer pathogenesis; however, little is known on a systems level about how epithelial-stromal interactions evolve during carcinogenesis. Results: We develop a framework for building genome-wide epithelial-stromal co-expression networks composed of pairwise co-expression relationships between mRNA levels of genes expressed in the epithelium and stroma across a population of patients. We apply this method to laser capture micro-dissection expression profiling datasets in the setting of breast carcinogenesis. Our analysis shows that epithelial-stromal co-expression networks undergo extensive rewiring during carcinogenesis, with the emergence of distinct network hubs in normal breast, and estrogen receptor-positive and estrogen receptor-negative invasive breast cancer, and the emergence of distinct patterns of functional network enrichment. In contrast to normal breast, the strongest epithelial-stromal co-expression relationships in invasive breast cancer mostly represent self-loops, in which the same gene is co-expressed in epithelial and stromal regions. We validate this observation using an independent laser capture micro-dissection dataset and confirm that self-loop interactions are significantly increased in cancer by performing computational image analysis of epithelial and stromal protein expression using images from the Human Protein Atlas. Conclusions: Epithelial-stromal co-expression network analysis represents a new approach for systems-level analyses of spatially localized transcriptomic data. The analysis provides new biological insights into the rewiring of epithelial-stromal co-expression networks and the emergence of epithelial-stromal co-expression self-loops in breast cancer. The approach may facilitate the development of new diagnostics and therapeutics targeting epithelial-stromal interactions in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0675-4) contains supplementary material, which is available to authorized users.