Person:
Quast, Kathleen

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Quast

First Name

Kathleen

Name

Quast, Kathleen

Search Results

Now showing 1 - 2 of 2
  • Publication
    Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex
    (Elsevier BV, 2011) Lodato, Simona; Rouaux, Caroline; Quast, Kathleen; Jantrachotechatchawan, Chanati; Studer, Michèle; Hensch, Takao; Arlotta, Paola
    In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2−/− cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.
  • Thumbnail Image
    Publication
    Functional Development and Plasticity of Parvalbumin Cells in Visual Cortex: Role of Thalamocortical Input
    (2013-03-15) Quast, Kathleen; Hensch, Takao K; Born, Richard; Chen, Chinfei; Landisman, Carole; Yuste, Rafael
    Unlike principal excitatory neurons, cortical interneurons comprise a diverse group of distinct subtypes. They can be classified by their morphology, molecular content, developmental origins, electrophysiological properties and specific connectivity patterns. The parvalbumin-positive \((PV^+)\), large basket interneuron has been implicated in two cortical functions: 1) the control and shaping of the excitatory response, and 2) the initiation of critical periods for plasticity. Disruptions in both phenomena have been implicated in the etiology of cognitive developmental disorders. Careful characterization of \(PV^+\) cell function and plasticity in response to their primary afferent, the thalamocortical synapse, is needed to directly relate their vital contribution at a synapse-specific or network level to whole animal behavior. Here, I used electrophysiological, anatomical and molecular genetic techniques in a novel slice preparation to elucidate \(PV^+\) circuit development and plasticity in mouse visual cortex. I found that GFP-positive \(PV^+\) cells in layer 4 undergo a rapid maturation after eye opening just prior to onset of the critical period. This development occurs across a number of intrinsic physiological properties that shape their precise, fast spiking. I further optimized and characterized a visual thalamocortical slice to examine the primary afferent input onto both pyramidal and \(PV^+\) cells. Thalamic input onto \(PV^+\) cells is larger, faster and again matures ahead of the critical period. Both the intrinsic and synaptic properties of \(PV^+\) cells are then maintained by a secreted homeoprotein, Otx2 (Sugiyama et al, 2008), which is mediated by an extracellular glycosaminoglycan recognition. Since the plasticity of fast-spiking, inhibitory neurons is dramatically distinct from their neighboring pyramidal neurons in vivo (Yazaki-Sugiyama et al. 2009), I directly examined the plasticity of thalamocortical synapses in vitro. After brief monocular deprivation, thalamic input specifically onto \(PV^+\) cells is reduced while remaining unaltered in pyramidal cells. Deprivations prior to critical period onset or in GAD65 knockout mice neither produce a shift of visual responsiveness in vivo (Hensch et al, 1998) nor reduce thalamocortical input onto \(PV^+\) cells. These results directly confirm that \(PV^+\) cells are uniquely sensitive to visual experience, which may drive further rewiring of the surrounding excitatory cortical network.