Person:
Gori, Francesca

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gori

First Name

Francesca

Name

Gori, Francesca

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Hypothalamic ΔFosB prevents age-related metabolic decline and functions via SNS
    (Impact Journals LLC, 2017) Sato, Kazusa; Idelevich, Anna; Nagano, Kenichi; Rowe, Glenn C.; Gori, Francesca; Baron, Roland
    The ventral hypothalamus (VHT) integrates several physiological cues to maintain glucose homeostasis and energy balance. Aging is associated with increased glucose intolerance but the underlying mechanisms responsible for age-related metabolic decline, including neuronal signaling in the VHT, remain elusive. We have shown that mice with VHT-targeted overexpression of ΔFosB, a splice variant of the AP1 transcription factor FosB, exhibit increased energy expenditure, leading to decreased adiposity. Here, we show that VHT-targeted overexpression of ΔFosB also improves glucose tolerance, increases insulin sensitivity in target organs and thereby suppresses insulin secretion. These effects are also observed by the overexpression of dominant negative JunD, demonstrating that they occur via AP1 antagonism within the VHT. Furthermore, the improved glucose tolerance and insulin sensitivity persisted in aged animals overexpressing ΔFosB in the VHT. These beneficial effects on glucose metabolism were abolished by peripheral sympathectomy and α-adrenergic, but not β-adrenergic, blockade. Taken together, our results show that antagonizing AP1 transcription activity in the VHT leads to a marked improvement in whole body glucose homeostasis via activation of the SNS, conferring protection against age-related impairment in glucose metabolism. These findings may open novel avenues for therapeutic intervention in diabetes and age-related glucose intolerance.
  • Thumbnail Image
    Publication
    The Crosstalk between Osteoclasts and Osteoblasts Is Dependent upon the Composition and Structure of Biphasic Calcium Phosphates
    (Public Library of Science, 2015) Shiwaku, Yukari; Neff, Lynn; Nagano, Kenichi; Takeyama, Ken-Ichi; de Bruijn, Joost; Dard, Michel; Gori, Francesca; Baron, Roland
    Biphasic calcium phosphates (BCPs), consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), exhibit good biocompatibility and osteoconductivity, maintaining a balance between resorption of the biomaterial and formation of new bone. We tested whether the chemical composition and/or the microstructure of BCPs affect osteoclasts (OCs) differentiation and/or their ability to crosstalk with osteoblasts (OBs). To this aim, OCs were cultured on BCPs with HA content of 5, 20 or 60% and their differentiation and activity were assessed. We found that OC differentiation is partially impaired by increased HA content, but not by the presence of micropores within BCP scaffolds, as indicated by TRAP staining and gene profile expression. We then investigated whether the biomaterial-induced changes in OC differentiation also affect their ability to crosstalk with OBs and regulate OB function. We found that BCPs with low percentage of HA favored the expression of positive coupling factors, including sphingosine-kinase 1 (SPHK1) and collagen triple helix repeat containing 1 (Cthrc1). In turn, the increase of these secreted coupling factors promotes OB differentiation and function. All together our studies suggest that the chemical composition of biomaterials affects not only the differentiation and activity of OCs but also their potential to locally regulate bone formation.