Person:
Chow, Victoria Ye

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Chow

First Name

Victoria Ye

Name

Chow, Victoria Ye

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique
    (Copernicus GmbH, 2010) Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, Bruce; Gottlieb, Elaine; Chow, Victoria Ye; Santoni, G. W.; Wofsy, Steven
    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4
  • Thumbnail Image
    Publication
    Dynamics of Carbon, Biomass, and Structure in Two Amazonian Forests
    (American Geophysical Union, 2008) Pyle, Elizabeth Hammond; Santoni, Gregory; Nascimento, Henrique E. M.; Hutyra, Lucy R.; Vieira, Simone; Curran, Daniel J.; van Haren, Joost; Saleska, Scott R.; Chow, Victoria Ye; Carmago, Plinio B.; Laurance, William; Wofsy, Steven
    Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajós National Forest (TNF) near Santarém, Pará. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 ± 7.6 MgC·ha−1 versus 149 ± 6.0 MgC·ha−1, respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 ± 1.5 MgC·ha−1 at BDFFP, versus 40.1 ± 3.9 MgC·ha−1 at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 ± 0.22 MgC·ha−1·a−1 in TNF, 2.59 ± 0.16 MgC·ha−1·a−1 in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10–15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.
  • Thumbnail Image
    Publication
    Sources of Carbon Monoxide and Formaldehyde in North America Determined from High-Resolution Atmospheric Data
    (Copernicus Publications, 2008) Miller, Scot M.; Matross, Daniel M.; Andrews, Arlyn E.; Millet, Dylan B.; Longo, Marcos; Gottlieb, Ellaine W.; Hirsch, Adam I.; Gerbig, Christoph; Lin, John C.; Daube, Bruce C.; Hudman, Rynda C.; Dias, Pedro Leite da Silva; Chow, Victoria Ye; Wofsy, Steven
    We analyze the North American budget for carbon monoxide using data for CO and formaldehyde concentrations from tall towers and aircraft in a model-data assimilation framework. The Stochastic Time-Inverted Lagrangian Transport model for CO (STILT-CO) determines local to regional-scale CO contributions associated with production from fossil fuel combustion, biomass burning, and oxidation of volatile organic compounds (VOCs) using an ensemble of Lagrangian particles driven by high resolution assimilated meteorology. In many cases, the model demonstrates high fidelity simulations of hourly surface data from tall towers and point measurements from aircraft, with somewhat less satisfactory performance in coastal regions and when CO from large biomass fires in Alaska and the Yukon Territory influence the continental US. Inversions of STILT-CO simulations for CO and formaldehyde show that current inventories of CO emissions from fossil fuel combustion are significantly too high, by almost a factor of three in summer and a factor two in early spring, consistent with recent analyses of data from the INTEX-A aircraft program. Formaldehyde data help to show that sources of CO from oxidation of CH4 and other VOCs represent the dominant sources of CO over North America in summer.