Person:
Lee, Mi-Sun

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Lee

First Name

Mi-Sun

Name

Lee, Mi-Sun

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes
    (BioMed Central, 2017) Lee, Mi-Sun; LeBouf, Ryan F.; Son, Youn-Suk; Koutrakis, Petros; Christiani, David
    Background: We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. Methods: We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. Results: We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. Conclusion: We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.
  • Thumbnail Image
    Publication
    Socioeconomic status is associated with reduced lung function in China: an analysis from a large cross-sectional study in Shanghai
    (BioMed Central, 2016) Gaffney, Adam; Hang, Jing-qing; Lee, Mi-Sun; Su, Li; Zhang, Feng-ying; Christiani, David
    Background: An inverse association between socioeconomic status and pulmonary function has emerged in many studies. However, the mediating factors in this relationship are poorly understood, and might be expected to differ between countries. We sought to investigate the relationship between socioeconomic status and lung function in China, a rapidly industrializing nation with unique environmental challenges, and to identify potentially-modifiable environmental mediators. Methods: We used data from the Shanghai Putuo Study, a cross-sectional study performed in Shanghai, China. Participants completed a questionnaire and spirometry. The primary exposure was socioeconomic status, determined by education level. The primary outcomes were FEV1 and FVC percent predicted. Multiple linear regressions were used to test this association, and the percent explained by behavioral, environmental, occupational, and dietary variables was determined by adding these variables to a base model. Results: The study population consisted of a total of 22,878 study subjects that were 53.3 % female and had a mean age of 48. In the final multivariate analysis, the effect estimates for FEV1 and FVC percent predicted for low socioeconomic status (compared to high) were statistically significant at a p-value of <0.01. Smoking, biomass exposure, mode of transportation to work, a diet low in fruits or vegetables, and occupational category partially attenuated the relationship between SES and lung function. In a fully-adjusted age-stratified analysis, the socioeconomic disparity in lung function widened with increasing age. Conclusions: We found cross-sectional evidence of socioeconomic disparities in pulmonary function in Shanghai. These differences increased with age and were partially explained by potentially modifiable exposures.
  • Thumbnail Image
    Publication
    In-Home Solid Fuel Use and Cardiovascular Disease: A Cross-Sectional Analysis of the Shanghai Putuo Study
    (BioMed Central, 2012) Lee, Mi-Sun; Hang, Jing-qing; Zhang, Feng-ying; Dai, He-lian; Su, Li; Christiani, David
    Background: Although recent research evidence suggests an association between household air pollution from solid fuel use, such as coal or biomass, and cardiovascular events such as hypertension, little epidemiologic data are available concerning such exposure effects on cardiovascular endpoints other than hypertension. We explored the association between in-home solid fuel use and self-reported diagnoses of cardiovascular endpoints, such as hypertension, coronary heart disease (CHD), stroke, and diabetes. Methods: We analyzed 14,068 Chinese adults, aged 18 years and older. Odds ratios (OR) and the corresponding 95% confidence intervals (CI) were estimated using logistic regression models for the risk of each outcome after adjusting for potential confounders. Results: The use of solid fuel in home was significantly associated with an increased risk for hypertension (OR 1.70, 95% CI 1.40 to 2.07), CHD (OR 2.58, 95% CI 1.53 to 4.32), and diabetes (OR 2.48, 95% CI 1.59 to 3.86), after adjusting for potential confounders. Compared with individuals in the lowest tertile of the duration of solid fuel exposure, those in the highest tertile of the duration of solid fuel exposure had an increased odds of hypertension (OR 1.73, 95% CI 1.45 to 2.06), stroke (OR 1.87, 95% CI 1.03 to 3.38), and diabetes (OR 3.18, 95% CI 2.11 to 4.78). Conclusions: Our data suggest that in-home solid fuel exposure maybe associated with increased risk for hypertension, CHD, stroke, and diabetes in the Chinese adult population. Further large-scale longitudinal studies are warranted to confirm these findings.
  • Thumbnail Image
    Publication
    Synthesis of Monolithic Graphene–Graphite Integrated Electronics
    (Nature Publishing Group, 2012) Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles
    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene–graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene–graphite based electronics.